Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tailoring Anisotropy in 2D Heterostructures via van der Waals Engineering

WEN Ting SU Ziluo WANG Yalan CAI Shuang WU Jiaqi QIN Jiaze JIAO Chenyin WANG Zenghui ZHANG Zejuan PEI Shenghai XIA Juan

Citation:

Tailoring Anisotropy in 2D Heterostructures via van der Waals Engineering

WEN Ting, SU Ziluo, WANG Yalan, CAI Shuang, WU Jiaqi, QIN Jiaze, JIAO Chenyin, WANG Zenghui, ZHANG Zejuan, PEI Shenghai, XIA Juan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Luminescence and anisotropy in two-dimensional (2D) materials have important implications for both fundamental material physics and potential applications such as polarized light-emitting devices. However, many natural-occuring 2D materials typically exhibit either luminescence or anisotropy, but not both. In this work, we leverage van der Waals (vdW) engineering to construct a heterostructure (HS) with anisotropic luminescent properties, composed of isotropic monolayer (1L) MoS2 (with strong intrinsic luminescence) and low-symmetry NbIrTe4 (strong anisotropy without photoluminescence). Experimentally, we characterize the optical response of the HS using angle-resolved PL spectroscopy. The results demonstrate that the intrinsic anisotropic potential field of NbIrTe4 at the interface effectively breaks the in-plane isotropic symmetry of MoS2, inducing a pronounced polarization-dependent emission of A and B excitons. The anisotropy ratio is enhanced to ~1.58, corresponding to a linear polarization degree of approximately 22%. This work provides new insights into 2D interfacial coupling and offers useful insights for the design and engineering of next-generation high-performance, tunable polarized light-emitting devices.
  • [1]

    Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photon. Insights 2 R03

    [2]

    Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028

    [3]

    Qiu H, Yu Z, Zhao T, Zhang Q, Xu M, Li P, Li T, Bao W, Chai Y, Chen S, Chen Y, Cheng H, Dai D, Di Z, Dong Z, Duan X, Feng Y, Fu Y, Guo J, Guo P, Hao Y, He J, He X, Hu J, Hu W, Hu Z, Huang X, Huang Z, Imran A, Kong Z, Li J, Li Q, Li W, Liao L, Liu B, Liu C, Liu C, Liu G, Liu K, Liu L, Liu S, Liu Y, Lu D, Ma L, Miao F, Ni Z, Ning J, Pan A, Ren T, Shu H, Sun L, Sun Y, Tao Q, Tian Z, Wang D, Wang H, Wang H, Wang J, Wang J, Wang W, Wang X, Wang Y, Wang Y, Wang Z, Wen Y, Wu H, Wu H, Wu J, Wu Y, Xia L, Xiang B, Xing L, Xiong Q, Xiong X, Xu J, Xu T, Xu Y, Yang L, Yang Y, Yang Y, Ye L, Ye Y, Yu B, Yu T, Zeng H, Zhang G, Zhang H, Zhang J, Zhang K, Zhang T, Zhang X, Zhang Y, Zhao C, Zhao Y, Zheng T, Zhou P, Zhou S, Zhu Y, Yang D, Shi Y, Wang H, Wang X 2024 Sci. China Inform. Sci. 67 160400

    [4]

    Xu B, Zhu J, Xiao F, Jiao C, Liang Y, Wen T, Wu S, Zhang Z, Lin L, Pei S, Jia H, Chen Y, Ren Z, Wei X, Huang W, Xia J, Wang Z 2023 Small 19 2300631

    [5]

    Wen T, Zhang M, Li J, Jiao C, Pei S, Wang Z, Xia, J 2023 Nanoscale Horiz. 8 516

    [6]

    Zhang M, Jiao C, Wen T, Li J, Pei S, Wang Z, Xia J, 2022 Acta. Phys. Sin. 71 140702 (in Chinese)[张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702]10

    [7]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111

    [8]

    Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92

    [9]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68

    [10]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171

    [11]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001

    [12]

    Gao W, Kahn A 2002 Org. Electron. 3 53

    [13]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155

    [14]

    Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971

    [15]

    Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988

    [16]

    Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503

    [17]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211

    [18]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417

    [19]

    Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498

    [20]

    Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749

    [21]

    Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772

    [22]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486-491

    [23]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171-1176

    [24]

    Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604

    [25]

    Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876–882

    [26]

    Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104

    [27]

    Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983-18993

    [28]

    Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053

    [29]

    Guo H H, Yang T, Tao P, Zhang Z D 2013 Chinese Phys. B 23 017201

    [30]

    Yazyev O V, Kis A 2015 Mater. Today. 18 20

    [31]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49

    [32]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [33]

    Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005

    [34]

    Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434

    [35]

    Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128

    [36]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495

    [37]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [38]

    He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931

    [39]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486

    [40]

    Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323

    [41]

    Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J-Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318

    [42]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [43]

    Shaw J A 1999 Appl. Opt. 38 3157

    [44]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203

    [45]

    Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658

    [46]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101

    [47]

    Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on the m = 1 helicon mode power deposition characteristic. Acta Physica Sinica, doi: 10.7498/aps.73.20231759
    [2] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, doi: 10.7498/aps.70.20201271
    [3] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, doi: 10.7498/aps.69.20191632
    [4] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, doi: 10.7498/aps.64.106101
    [5] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, doi: 10.7498/aps.63.137501
    [6] Wang Ding, Zhang Mei-Gen. Elastic wave propagation characteristics under anisotropic squirt-flow condition. Acta Physica Sinica, doi: 10.7498/aps.63.069101
    [7] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, doi: 10.7498/aps.61.016202
    [8] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, doi: 10.7498/aps.61.068401
    [9] Wang Hao, Liu Guo-Quan, Luan Jun-Hua. Study on 3D von Neumann equation with anisotropy for convex grains. Acta Physica Sinica, doi: 10.7498/aps.61.048102
    [10] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, doi: 10.7498/aps.58.278.1
    [11] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, doi: 10.7498/aps.57.5476
    [12] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, doi: 10.7498/aps.57.1246
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, doi: 10.7498/aps.57.6213
    [14] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, doi: 10.7498/aps.57.7729
    [15] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, doi: 10.7498/aps.56.1911
    [16] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, doi: 10.7498/aps.56.1443
    [17] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, doi: 10.7498/aps.55.1055
    [18] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, doi: 10.7498/aps.53.783
    [19] . Acta Physica Sinica, doi: 10.7498/aps.51.355
    [20] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, doi: 10.7498/aps.51.2101
Metrics
  • Abstract views:  106
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  30 September 2025
  • /

    返回文章
    返回