-
Luminescence and anisotropy in two-dimensional (2D) materials have important implications for both fundamental material physics and potential applications such as polarized light-emitting devices. However, many natural-occuring 2D materials typically exhibit either luminescence or anisotropy, but not both. In this work, we leverage van der Waals (vdW) engineering to construct a heterostructure (HS) with anisotropic luminescent properties, composed of isotropic monolayer (1L) MoS2 (with strong intrinsic luminescence) and low-symmetry NbIrTe4 (strong anisotropy without photoluminescence). Experimentally, we characterize the optical response of the HS using angle-resolved PL spectroscopy. The results demonstrate that the intrinsic anisotropic potential field of NbIrTe4 at the interface effectively breaks the in-plane isotropic symmetry of MoS2, inducing a pronounced polarization-dependent emission of A and B excitons. The anisotropy ratio is enhanced to ~1.58, corresponding to a linear polarization degree of approximately 22%. This work provides new insights into 2D interfacial coupling and offers useful insights for the design and engineering of next-generation high-performance, tunable polarized light-emitting devices.
-
[1] Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photon. Insights 2 R03
[2] Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028
[3] Qiu H, Yu Z, Zhao T, Zhang Q, Xu M, Li P, Li T, Bao W, Chai Y, Chen S, Chen Y, Cheng H, Dai D, Di Z, Dong Z, Duan X, Feng Y, Fu Y, Guo J, Guo P, Hao Y, He J, He X, Hu J, Hu W, Hu Z, Huang X, Huang Z, Imran A, Kong Z, Li J, Li Q, Li W, Liao L, Liu B, Liu C, Liu C, Liu G, Liu K, Liu L, Liu S, Liu Y, Lu D, Ma L, Miao F, Ni Z, Ning J, Pan A, Ren T, Shu H, Sun L, Sun Y, Tao Q, Tian Z, Wang D, Wang H, Wang H, Wang J, Wang J, Wang W, Wang X, Wang Y, Wang Y, Wang Z, Wen Y, Wu H, Wu H, Wu J, Wu Y, Xia L, Xiang B, Xing L, Xiong Q, Xiong X, Xu J, Xu T, Xu Y, Yang L, Yang Y, Yang Y, Ye L, Ye Y, Yu B, Yu T, Zeng H, Zhang G, Zhang H, Zhang J, Zhang K, Zhang T, Zhang X, Zhang Y, Zhao C, Zhao Y, Zheng T, Zhou P, Zhou S, Zhu Y, Yang D, Shi Y, Wang H, Wang X 2024 Sci. China Inform. Sci. 67 160400
[4] Xu B, Zhu J, Xiao F, Jiao C, Liang Y, Wen T, Wu S, Zhang Z, Lin L, Pei S, Jia H, Chen Y, Ren Z, Wei X, Huang W, Xia J, Wang Z 2023 Small 19 2300631
[5] Wen T, Zhang M, Li J, Jiao C, Pei S, Wang Z, Xia, J 2023 Nanoscale Horiz. 8 516
[6] Zhang M, Jiao C, Wen T, Li J, Pei S, Wang Z, Xia J, 2022 Acta. Phys. Sin. 71 140702 (in Chinese)[张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702]10
[7] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111
[8] Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92
[9] Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68
[10] Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171
[11] Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001
[12] Gao W, Kahn A 2002 Org. Electron. 3 53
[13] Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155
[14] Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971
[15] Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988
[16] Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503
[17] Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211
[18] Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417
[19] Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498
[20] Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749
[21] Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772
[22] Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486-491
[23] Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171-1176
[24] Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604
[25] Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876–882
[26] Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104
[27] Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983-18993
[28] Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053
[29] Guo H H, Yang T, Tao P, Zhang Z D 2013 Chinese Phys. B 23 017201
[30] Yazyev O V, Kis A 2015 Mater. Today. 18 20
[31] Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49
[32] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
[33] Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005
[34] Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434
[35] Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128
[36] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495
[37] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626
[38] He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931
[39] Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486
[40] Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323
[41] Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J-Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318
[42] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[43] Shaw J A 1999 Appl. Opt. 38 3157
[44] Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203
[45] Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658
[46] Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101
[47] Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005
Metrics
- Abstract views: 106
- PDF Downloads: 4
- Cited By: 0