Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Customizing two-dimensional heterojunction with novel luminescenct anisotropy using van der Waals engineering

WEN Ting SU Ziluo WANG Yalan CAI Shuang WU Jiaqi QIN Jiaze JIAO Chenyin WANG Zenghui ZHANG Zejuan PEI Shenghai XIA Juan

Citation:

Customizing two-dimensional heterojunction with novel luminescenct anisotropy using van der Waals engineering

WEN Ting, SU Ziluo, WANG Yalan, CAI Shuang, WU Jiaqi, QIN Jiaze, JIAO Chenyin, WANG Zenghui, ZHANG Zejuan, PEI Shenghai, XIA Juan
cstr: 32037.14.aps.74.20251120
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Luminescence and anisotropy in two-dimensional (2D) materials have important implications for both fundamental material physics and potential applications such as polarized light-emitting devices. However, many natural-occuring 2D materials typically exhibit either luminescence or anisotropy, but not both. In this work, we utilize van der Waals (vdW) engineering to construct a heterostructure (HS) with anisotropic luminescent properties, which is composed of isotropic monolayer (1L) MoS2 (with strong intrinsic luminescence) and low-symmetry NbIrTe4 (strong anisotropy without photoluminescence). Experimentally, we characterize the optical response of the HS by using angle-resolved PL spectroscopy. The results indicate that the intrinsic anisotropic potential field of NbIrTe4 at the interface effectively breaks the in-plane isotropic symmetry of MoS2, inducing a pronounced polarization-dependent emission of A and B excitons. The anisotropy ratio is enhanced to ~1.58, corresponding to a linear polarization degree of approximately 22%. This work provides new insights into 2D interfacial coupling and offers useful guidance for the design and engineering of next-generation high-performance, tunable polarized light-emitting devices.
      Corresponding author: WANG Zenghui, zenghui.wang@uestc.edu.cn ; ZHANG Zejuan, zejuanzhang@uestc.edu.cn ; PEI Shenghai, shpei@uestc.edu.cn ; XIA Juan, juanxia@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. T2325007, 62450003, U21A20459, 62104029), the Zhejiang Provincial Natural Science Foundation of China (Grant No. ZCLQN25A0407), the Sichuan Provincial Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 25NSFJQ0277), and the State Key Laboratory of Meta-stable Materials Science and Technology (Yanshan University), China (Grant No. 202504).
    [1]

    Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photonics Insights 2 R03Google Scholar

    [2]

    Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028Google Scholar

    [3]

    Qiu H, Yu Z, Zhao T, et al. 2024 Sci. China Inform. Sci. 67 160400Google Scholar

    [4]

    Xu B, Zhu J K, Xiao F, Jiao C Y, Liang Y C, Wen T, Wu S, Zhang Z J, Lin L, Pei S H, Jia H, Chen Y, Ren Z M, Wei X Y, Huang W, Xia J, Wang Z H 2023 Small 19 2300631Google Scholar

    [5]

    Wen T, Zhang M D, Li J, Jiao C Y, Pei S H, Wang Z H, Xia J 2023 Nanoscale Horiz. 8 516Google Scholar

    [6]

    张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702Google Scholar

    Zhang M D, Jiao C Y, Wen T, Li J, Pei S H, Wang Z H, Xia J 2022 Acta. Phys. Sin. 71 140702Google Scholar

    [7]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [8]

    Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92Google Scholar

    [9]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68Google Scholar

    [10]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar

    [11]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [12]

    Gao W, Kahn A 2002 Org. Electron. 3 53Google Scholar

    [13]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar

    [14]

    Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971Google Scholar

    [15]

    Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988Google Scholar

    [16]

    Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503Google Scholar

    [17]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211Google Scholar

    [18]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417Google Scholar

    [19]

    Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498Google Scholar

    [20]

    Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749Google Scholar

    [21]

    Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772Google Scholar

    [22]

    Guo Y, Zhang Y, Liu Q L, Zhou Z, He J, Yuan S, Heine T, Wang J 2024 ACS Nano 18 11732Google Scholar

    [23]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171Google Scholar

    [24]

    Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604Google Scholar

    [25]

    Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876Google Scholar

    [26]

    Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104Google Scholar

    [27]

    Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983Google Scholar

    [28]

    Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053Google Scholar

    [29]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201Google Scholar

    [30]

    Yazyev O V, Kis A 2015 Mater. Today. 18 20Google Scholar

    [31]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [32]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [33]

    Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005Google Scholar

    [34]

    Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434Google Scholar

    [35]

    Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128Google Scholar

    [36]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [37]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [38]

    He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931Google Scholar

    [39]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486Google Scholar

    [40]

    Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323Google Scholar

    [41]

    Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318Google Scholar

    [42]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [43]

    Shaw J A 1999 Appl. Opt. 38 3157Google Scholar

    [44]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203Google Scholar

    [45]

    Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658Google Scholar

    [46]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101Google Scholar

    [47]

    Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005Google Scholar

  • 图 1  实验装置示意图. 其激发光源为波长532 nm的线偏振激光, 通过旋转半波片调节激发光偏振方向, 实现角偏振PL测量. 激光束经100倍物镜聚焦于样品表面, 激发功率控制在0.1 mW以下, 以有效抑制光致加热效应. 插图为1L-MoS2与NbIrTe4薄片堆叠的异质结侧视图

    Figure 1.  Schematic diagram of the experimental setup. A linearly polarized laser with a wavelength of 532 nm serves as the excitation source, and a rotating half-wave plate is used to control the polarization angle for angle-resolved polarization-dependent PL measurements. The laser beam is focused onto the sample surface using a 100× objective lens, and the excitation power keep below 0.1 mW to effectively suppress photoinduced heating effects. Inset: side view of the crystal structure of 1L-MoS2/NbIrTe4 heterostructure.

    图 2  样品的基本结构与光学表征 (a), (b) 分别为MoS2和NbIrTe4的晶体结构示意图; (c), (d) 分别展示了1L-MoS2与II类Weyl半金属NbIrTe4的能带结构示意图, 突出其典型的电子态特征; (e) 1L-MoS2/NbIrTe4异质结的光学照片, 我们采用机械剥离法分别制备1L-MoS2和NbIrTe4薄片, 并通过干法转移技术依次将NbIrTe4与1L-MoS2转移至Si/SiO2基底, 堆叠形成1L-MoS2/NbIrTe4异质结(Heterostructure, HS). 随后, 异质结构样品被放置于120 ℃的真空环境中退火6 h, 以增强界面接触与稳定性. 其中, 蓝色虚线标示1L-MoS2区域, 红色点划线标示NbIrTe4区域, 紫色实线标示异质结区域, 比例尺为5 μm; (f) 1L-MoS2, 异质结和纯NbIrTe4的PL光谱, 橙色与绿色包络曲线分别对应激子峰XA与XB

    Figure 2.  Structural and optical characterization of the samples. (a), (b) Crystal structures of MoS2 and NbIrTe4, respectively. (c), (d) Schematic band structures of monolayer MoS2 and the type-II Weyl semimetal NbIrTe4, highlighting their representative electronic features. (e) Optical image of the 1L-MoS2/NbIrTe4 heterostructure (HS). 1L-MoS2 and NbIrTe4 flakes are prepared separately via mechanical exfoliation. A dry-transfer technique is then used to sequentially transfer NbIrTe4 and 1L-MoS2 onto a Si/SiO2 substrate, forming a stacked 1L-MoS2/NbIrTe4 HS. The HS sample is subsequently annealed in a vacuum environment at 120 ℃ for 6 h to enhance interfacial contact and structural stability. The white dashed outline indicates the region of monolayer MoS2, the red dotted outline marks the NbIrTe4 region, and the purple solid line outline indicates the region of heterostructure. Scale bar: 5 μm. (f) PL spectra of monolayer MoS2, the 1L-MoS2/NbIrTe4 heterostructure and NbIrTe4. The orange and green shaded areas correspond to the exciton XA and XB, respectively.

    图 3  1L-MoS2与1L-MoS2/NbIrTe4异质结的角偏振PL光谱特性 (a) 1L-MoS2在线性激发光平行(0°)和垂直(90°)于b轴时的PL光谱; (b) 1L-MoS2中激子峰XA(橙色)与XB(绿色)的PL强度随偏振角变化的极坐标图, 圆点为实验测量值, 实线为拟合曲线; (c) 1L-MoS2/NbIrTe4异质结在激发光偏振方向平行(0°)和垂直于(270°)b轴时的PL光谱; (d) 异质结中激子峰XA与XB的PL强度角度依赖关系, 对应的极坐标图展示了其光学各向异性行为

    Figure 3.  Angle-resolved polarized PL spectra of monolayer MoS2 and 1L-MoS2/NbIrTe4 heterostructure: (a) The PL spectra of 1L-MoS2 with the linear excitation light is parallel and perpendicular to the b axis; (b) polar plots of the PL intensity of exciton XA (purple) and XB (green) in monolayer MoS2, where the dots represent experimental data and the solid lines correspond to fitted curves; (c) the PL spectra of the 1L-MoS2/NbIrTe4 heterostructure with the linear excitation light is parallel and perpendicular to the b axis; (d) polar plots showing the angular dependence of PL intensity for excitons XA and XB in the heterostructure, indicating pronounced optical anisotropy.

    图 4  (a) 1L-MoS2的面内晶格结构示意图及其面内晶格投影出的布里渊区; (b) 1L-MoS2/NbIrTe4异质结的层间耦合作用打破MoS2晶格结构面内对称性及其晶格结构投影出的布里渊区示意图

    Figure 4.  (a) In-plane lattice of monolayer MoS2 and corresponding Brillouin zone projected from in-plane lattice of monolayer MoS2; (b) schematic diagram of the interlayer coupling regulation mechanism of 1L-MoS2/NbIrTe4 heterostructure and corresponding Brillouin zone projected from anisotropy MoS2.

  • [1]

    Huang S, Wang C, Xie Y, Yu B, Yan H 2023 Photonics Insights 2 R03Google Scholar

    [2]

    Wen T, Li J, Deng Q, Jiao C, Zhang M, Wu S, Lin L, Huang W, Xia J, Wang Z 2022 Small 18 2108028Google Scholar

    [3]

    Qiu H, Yu Z, Zhao T, et al. 2024 Sci. China Inform. Sci. 67 160400Google Scholar

    [4]

    Xu B, Zhu J K, Xiao F, Jiao C Y, Liang Y C, Wen T, Wu S, Zhang Z J, Lin L, Pei S H, Jia H, Chen Y, Ren Z M, Wei X Y, Huang W, Xia J, Wang Z H 2023 Small 19 2300631Google Scholar

    [5]

    Wen T, Zhang M D, Li J, Jiao C Y, Pei S H, Wang Z H, Xia J 2023 Nanoscale Horiz. 8 516Google Scholar

    [6]

    张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟 2022 物理学报 71 140702Google Scholar

    Zhang M D, Jiao C Y, Wen T, Li J, Pei S H, Wang Z H, Xia J 2022 Acta. Phys. Sin. 71 140702Google Scholar

    [7]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [8]

    Chakraborty B, Matte H R, Sood A K, Rao C N R 2013 J. Raman Spectrosc. 44 92Google Scholar

    [9]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68Google Scholar

    [10]

    Chaudhary K, Tamagnone M, Rezaee M, Bediako D K, Ambrosio A, Kim P, Capasso F 2019 Sci. Adv. 5 eaau7171Google Scholar

    [11]

    Xu J P, Liu C, Wang M X, Ge J, Liu Z L, Yang X, Chen Y, Liu Y, Xu Z A, Gao C L, Qian D, Zhang F C, Jia J F 2014 Phys. Rev. Lett. 112 217001Google Scholar

    [12]

    Gao W, Kahn A 2002 Org. Electron. 3 53Google Scholar

    [13]

    Shojaei I A, Pournia S, Le C, Ortiz B R, Jnawali G, Zhang F C, Wilson S D, Jackson H E, Smith L M 2021 Sci. Rep. 11 8155Google Scholar

    [14]

    Lee J E, Wang A, Chen S, Kwon M, Hwang J, Cho M, Son K, Han D, Choi J W, Kim Y D, Mo S, Petrovic C, Hwang C, Park S Y, Jang C, Ryu H 2024 Nat. Commun. 15 3971Google Scholar

    [15]

    Bi X, Zhang Y, Ao L, Li H, Huang J, Qin F, Yuan H 2025 Adv. Funct. Mater. 35 2415988Google Scholar

    [16]

    Jiao C, Pei S, Wu S, Wang Z, Xia J 2023 Rep. Prog. Phys. 86 114503Google Scholar

    [17]

    Zhang Z, Jiao C, Pei S, Zhou X, Qin J, Zhang W, Zhou Y, Wang Z, Xia J 2024 Sci. China Phys. Mech. 67 288211Google Scholar

    [18]

    Jiao C, Pei S, Zhang Z, Li C, Zhu J, Qin J, Zhang M, Wen T, Zhou Y, Wang Z, Xia J 2024 Appl. Phys. Rev. 11 031417Google Scholar

    [19]

    Pei S, Wang Z, Xia J 2022 ACS Nano 16 11498Google Scholar

    [20]

    Li X, Xie X, Wu B, Chen J, Li S, He J, Liu Z, Wang J, Liu Y 2024 Nano Res. 17 6749Google Scholar

    [21]

    Zhao M, Zhang W, Liu M, Zou C, Yang K, Yang Y, Dong Y, Zhang L, Huang S 2016 Nano Res. 9 3772Google Scholar

    [22]

    Guo Y, Zhang Y, Liu Q L, Zhou Z, He J, Yuan S, Heine T, Wang J 2024 ACS Nano 18 11732Google Scholar

    [23]

    Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, Watanabe K, Tongay S, Smirnov D, Wang Z, Zhang C, Cui Y T, Shi S F 2022 Nat. Phys. 18 1171Google Scholar

    [24]

    Lian Z, Chen D, Ma L, Meng Y, Su Y, Yan L, Huang X, Wu Q, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Zhang C, Cui Y T, Shi S F 2023 Nat. Commun. 14 4604Google Scholar

    [25]

    Sierra J F, Světlík J, Savero Torres W, Camosi L, Herling F, Guillet T, Xu K, Reparaz J S, Marinova V, Dimitrov D, Valenzuela S O 2025 Nat. Mater. 24 876Google Scholar

    [26]

    Ali S A, Irfan A, Mazumder A, Balendhran S, Ahmed T, Walia S, Ulhaq A 2021 Appl. Phys. Lett. 119 193104Google Scholar

    [27]

    Schrenkova V, Kapitán J, Bour P, Chatziadi A, Sklenar A, Kaminsky J 2024 Anal. Chem. 96 18983Google Scholar

    [28]

    Yang D, Sandoval S J, Divigalpitiya W M R, Irwin J C, Frindt R F 1991 Phys. Rev. B 43 12053Google Scholar

    [29]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201Google Scholar

    [30]

    Yazyev O V, Kis A 2015 Mater. Today. 18 20Google Scholar

    [31]

    Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar

    [32]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [33]

    Kaplan D, Gong Y, Mills K, Swaminathan V, Ajayan P M, Shirodkar S, Kaxiras E 2016 2D Mater. 3 015005Google Scholar

    [34]

    Sun J, Gu Y J, Lei D Y, Lau S P, Wong W T, Wong K Y, Chan H L W 2016 ACS Photonics 3 2434Google Scholar

    [35]

    Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J, Balicas L 2019 Phys. Rev. B 99 195128Google Scholar

    [36]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [37]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [38]

    He K, Poole C, Mak K F, Shan J 2013 Nano Lett. 13 2931Google Scholar

    [39]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L 2015 Nano Lett. 15 486Google Scholar

    [40]

    Chou H C, Zhang X Q, Shiau S Y, Chien C H, Tang P W, Sung C T, Chang Y C, Lee Y H, Chen C 2022 Nanoscale 14 6323Google Scholar

    [41]

    Kim M S, Nam G, Park S, Kim H, Han G H, Lee J, Dhakal K P, Leem J Y, Lee Y H, Kim J 2015 Thin Solid Films 590 318Google Scholar

    [42]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [43]

    Shaw J A 1999 Appl. Opt. 38 3157Google Scholar

    [44]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203Google Scholar

    [45]

    Zheng X, Wei Y, Zhang X, Wei Z, Luo W, Guo X, Liu J, Peng G, Cai W, Huang H, Lv T, Deng C, Zhang X 2022 Adv. Funct. Mater. 32 2202658Google Scholar

    [46]

    Xie X, Ding J, Wu B, Zheng H, Li S, He J, Liu Z, Wang J, Liu Y 2023 Appl. Phys. Lett. 123 222101Google Scholar

    [47]

    Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, Kolosov O V 2015 2D Mater. 2 015005Google Scholar

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on the m = 1 helicon mode power deposition characteristic. Acta Physica Sinica, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun. Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application. Acta Physica Sinica, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [3] Sun Ting-Yu, Wu Liang, He Xian-Juan, Jiang Nan, Zhou Wen-Zhe, Ouyang Fang-Ping. Effect of strain and electric field on electronic structure and optical properties of Ga2SeTe/In2Se3 heterojunction. Acta Physica Sinica, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [4] Gu Zi-Heng, Zang Qiang, Zheng Gai-Ge. Dispersion properties of van der Waals phonon polaritons modulated by Weyl semimetals. Acta Physica Sinica, 2023, 72(19): 197102. doi: 10.7498/aps.72.20230167
    [5] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [6] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [7] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [8] Zhang Lun, Chen Hong-Li, Yi Yu, Zhang Zhen-Hua. Electronic and optical properties and quantum tuning effects of As/Hfs2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [9] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [10] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [11] Wu Tian, Yao Meng-Li, Long Meng-Qiu. First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures. Acta Physica Sinica, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [12] Zhang Zeng-Xing, Li Dong. Novel p-n junctions based on ambipolar two-dimensional crystals. Acta Physica Sinica, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [13] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [14] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [15] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [16] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [17] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [18] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [19] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [20] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
Metrics
  • Abstract views:  579
  • PDF Downloads:  23
  • Cited By: 0
Publishing process
  • Received Date:  19 August 2025
  • Accepted Date:  11 September 2025
  • Available Online:  30 September 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回