-
With the technological advantages of high thrust, high specific impulse, long life, variable specific impulse and high efficiency, the variable specific impulse magnetoplasma rocket engine has become the essential advanced propulsion system for the deep space exploration and manned space flight in the future. In the variable specific impulse magnetoplasma rocket engine, the ion cyclotron resonance heating stage is linked with the helicon plasma source. The operation status of the helicon plasma source has a direct influence on the ion heating process in the ion cyclotron resonance heating stage. It is of great significance for the testing and the optimization of the engine performance to reveal the influence of the ionization process on the ion heating process. In this paper, a multi-fluid model in which the ion cyclotron resonance heating stage is linked with the helicon plasma source was developed. The numerical simulation with different input current of helicon plasma source and different pressure was performed to analyze the effect of the operation status in the helicon plasma source on the ion energy density in the ion cyclotron resonance heating stage. The results show that the discharge mode of the helicon plasma source gradually changes with the increase of the input current and the plasma density jump appears while the ion temperature basically remains unchanged. With the plasma density jump and nearly identical ion temperature the ion energy density jump also appears in the simulation domain. Similar with the results of the simulation under different input current of the helicon plasma source, the plasma density and the ion energy density also jump when the pressure increases. However, the ion temperature decreases due to the deviation between the input frequency and the resonance frequency.With the numerical model and the input conditions of this paper, the ionization process in the helicon plasma source is decoupled with the ion heating process in the ion cyclotron resonance heating stage. The energy gain of a single ion in the ion cyclotron resonance heating stage does not change with the operation status of the helicon plasma source which account for the ability of the engine to work in multi mode.
-
Keywords:
- Variable specific impulse magnetoplasam rocket engine /
- Helicon plasma source /
- Ion cyclotron resonance heating stage /
- Fluid simulation
-
[1] Yu D R, Qiao L, Jiang W J, Liu H 2020 Journal of Propulsion Technology, 41,1 (in Chinese) [于达仁,乔磊,蒋文嘉 刘辉 2020 推进技术 41 1]
[2] Chang F R, Squire J P, Carter M D 2018 American Institute of Aeronautics and Astronautics Propulsion and Energy Forum, Cincinnati, USA, July 9-11, 2018 pp 4416-4423.
[3] Chang F R, Giambusso M, Corrigan A M H, Dean L O, Warrayat M F 2022 37th International Electric Propulsion Conference, Cambridge, USA, June 19-23, 2022 pp1-10
[4] Yu D R, Tang Y, Liu H 2023 Chinese Journal of Theoretical and Applied Mechanics, 55,12 (in Chinese)[于达仁,汤尧,刘辉 2023 力学学报 55 12 ]
[5] Yang X, Cheng M S, Wang M G, Li X K 2017 Acta Phys. Sin. 66 025201(in Chinese)[杨雄,程谋森,王墨戈,李小康 2017 物理学报 66 025201]
[6] Chen F F 2003 Phys. Plasmas 10 2586
[7] Wu M Y, Xiao C J, Wang X 2022 Plasma Sci. Technol. 5 24
[8] Chang L, Caneses J F, Thakur S C 2022 Front. Phys.10 1009563
[9] Rapp J, Owen L W, Canik J 2019 Phys. Plasmas 26 042513
[10] Yang X, Li X K, Guo D W 2024 Acta Aeronautica et Astronautica Sinica 45 528761(in Chinese)[杨雄,李小康,郭大伟 2024 航空学报 45 528761]
[11] Breizman B N, Ilin A V 2001 Phys. Plasmas 8 907
[12] Ilin A V, Chang F R, Squire J P 2005 43rd AlAA Aerospace Sciences Meeting and Exhibit Reno, USA, January 10-13, 2005 pp949-960
[13] Zhang Y J 2022 Nucl. Mater. Energy 33 101280
[14] Ilin A V, Chang F R 2004 Computer Physics Communications 164 251
[15] Wu M Y, Xiao C J, Wang X 2022 Phys. Plasmas 29
[16] Sun C J, Zhang Y J, Sang C F 2025 Nucl. Fusion 65 056007
[17] Peter L G, Robert J H 1994 Journal of Vacuum Science and Technology 12 461
[18] Yang Z Y, Fan W , Wei J G 2022 Plasma Sci. Technol. 24 074006
[19] Zhen F H, Chen Z Z, Zhang J Z 2000 IEEE Transactions on Microwave Theory and Techniques 48 1550
[20] Boris J P, Landsberg A M, Oran E S, Gardner J H 1993 LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations.
[21] Yang Z Y, Fan W, Han X W 2023 Front. Phys. 11 1182960
[22] Yang Z Y, Fan W, Lu H F 2023 Journal of Propulsion Technology 44 2208001(in Chinese)[杨振宇,范威,鲁海峰 2023 推进技术 44 2208001]
[23] Chen F F 2007 Plasma Sources Sci. Technol.16 593
[24] Thakur S C 2015 IEEE TRANSACTIONS ON PLASMA SCIENCE 43 2754
[25] Kim S H 2008 Plasma Phys. Control. Fusion 50 035007
Metrics
- Abstract views: 27
- PDF Downloads: 0
- Cited By: 0








下载: