Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single charge transfer cross sections of He+-H2O collisions

ZHANG Yu ZHU Yayan QI Yueying QU Yizhi YU Wandong

Citation:

Single charge transfer cross sections of He+-H2O collisions

ZHANG Yu, ZHU Yayan, QI Yueying, QU Yizhi, YU Wandong
cstr: 32037.14.aps.74.20251230
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The charge transfer cross sections of collisions between He ions in the solar wind and H2O molecule constitute essential data required for the astrophysical plasma modeling. However, experimental measurements of single charge transfer (SCT) cross sections for He+-H2O collisions at low-to-intermediate energies (corresponding to the velocity range of the solar wind) are extremely scarce, and first-priciple theoretical calculations have not been conducted. In this study, employing the time-dependent density functional theory nonadiabatically coupled with the molecular dynamics, the SCT cross sections are calculated for He+-H2O collisions over a broad energy range of 1.33–1800 keV. An inverse collision framework is used to investigate the charge transfer dynamics and electron-ion coupling processes. It is found that the SCT cross section exhibits a strong dependence on the molecular orientation. Furthermore, there are significant differences in the contributions of different molecular orientations to the cross section between low-energy and high-energy regions. The computed cross section results show good agreement with the existing data obtained from experiments and classical theoretical models. This indicates that the present theoretical method and numerical framework are not only applicable to handling the charge transfer processes in collisions between dressed ions and molecules but also enable the quantitative analysis of the effect of molecular orientation on the cross section. This study lays a foundation for cross section calculations of complex collision systems. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00193.
      Corresponding author: QI Yueying, yying_qi@zjxu.edu.cn ; QU Yizhi, yzqu@ucas.ac.cn ; YU Wandong, wandong.yu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12104185, 12104019, 12374229, U2430208), the Jiaxing Young Sci-Tech Talent Special Program, China (Grant No. 2024AY40007), and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications, China (Grant No. NY223203).
    [1]

    Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo López-Urrutia J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, Stöhlker T 2019 J. Phys. B 52 171003Google Scholar

    [2]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

    [3]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁 2024 物理学报 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [4]

    牛佳洁, 张唯唯, 祁月盈, 高俊文 2025 物理学报 74 153402Google Scholar

    Niu J J, Zhang W W, Qi Y Y, Gao J W 2025 Acta Phys. Sin. 74 153402Google Scholar

    [5]

    林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维 2025 物理学报 74 152501Google Scholar

    Lin X H, Lin M J, Wang K, Wu Y, Ren Y, Wang Y, Li J W 2025 Acta Phys. Sin. 74 152501Google Scholar

    [6]

    魏宝仁, 张瑞田 2025 中国科学: 物理学 力学 天文学 55 250008Google Scholar

    Wei B R, Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [7]

    Wedlund C S, Bodewits D, Alho M, Hoekstra R, Behar E, Gronoff G, Gunell H, Nilsson H, Kallio E, Beth A 2019 Astron. Astrophys. 630 A35Google Scholar

    [8]

    Fuselier S A, Shelley E G, Goldstein B E, Goldstein R, Neugebauer M, Ip W H, Balsiger H, Rème H 1991 Astrophys. J. 379 734Google Scholar

    [9]

    Greenwood J B, Chutjian A, Smith S J 2000 Astrophys. J. 529 605Google Scholar

    [10]

    Koopman D W 1968 Phys. Rev. 166 57Google Scholar

    [11]

    Rudd M E, Itoh A, Goffe T V 1985 Phys. Rev. A 32 2499Google Scholar

    [12]

    Rudd M E, Goffe T V, Itoh A, DuBois R D 1985 Phys. Rev. A 32 829Google Scholar

    [13]

    Sataka M, Yagishita A, Nakai Y 1990 J. Phys. B 23 1225Google Scholar

    [14]

    Bragg W H, Kleeman R 1905 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 10 318Google Scholar

    [15]

    Garcia P M Y, Sigaud G M, Luna H, Santos A C F, Montenegro E C, Shah M B 2008 Phys. Rev. A 77 052708Google Scholar

    [16]

    Murakami M, Kirchner T, Horbatsch M 2012 Phys. Rev. A 86 022719Google Scholar

    [17]

    Jana D, Purkait K, Halder, Purkait M 2021 Eur. Phys. J. D 75 245Google Scholar

    [18]

    Zhang Y W, Gao J W, Wu Y, Zhou F Y, Wang J G, Sisourat N, Dubois A 2020 Phys. Rev. A 102 022814Google Scholar

    [19]

    Wang F, Hong X H, Wang J, Kim K S 2011 J. Chem. Phys. 134 154308Google Scholar

    [20]

    Yu W D, Gao C Z, Sato S A, Castro A, Rubio A, Wei B R 2021 Phys. Rev. A 103 032816Google Scholar

    [21]

    Hong X H, Wang F, Wu Y, Gou B C, Wang J G 2016 Phys. Rev. A 93 062706Google Scholar

    [22]

    Yu W D, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y, Wei B R 2018 Phys. Rev. A 97 032706Google Scholar

    [23]

    Qin S, Gao C Z, Yu W D, Qu Y Z 2021 Chin. Phys. Lett. 38 063101Google Scholar

    [24]

    Zhang H H, Yu W D, Gao C Z, Qu Y Z 2023 Chin. Phys. Lett. 40 043101Google Scholar

    [25]

    Tancogne-Dejean N, Oliveira M J, Andrade X, Appel Heiko, Borca C H, Breton G L, Buchholz F, Castro A, Corni S, Correa A A, Giovannini U D, Delgado A, Eich F G, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen A H, Lebedeva I V, Lüders M, Marques M A L, Ohlmann S T, Pipolo S, Rampp M, Rozzi C A, Strubbe D A, Sato S A, Schäfer C, Theophilou I, Welden A, Rubio A 2020 J. Chem. Phys. 152 124119Google Scholar

    [26]

    Vignale G 1995 Phys. Rev. Lett. 74 3233Google Scholar

    [27]

    Gómez Pueyo A, Marques M A, Rubio A, Castro A 2018 J. Chem. Theory Comput. 14 3040Google Scholar

    [28]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703Google Scholar

    [29]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [30]

    Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, Pichl L 2003 Phys. Rev. A 68 012716Google Scholar

  • 图 1  反转碰撞框架下He+离子与H2O分子碰撞示意图, 其中(a)—(c)代表3种不同分子取向, $ {V_\tau } $为离子俘获电子的空间

    Figure 1.  Schematic of He+-H2O collisions with (a)–(c) three different molecular orientations in the inverse collision framework. $ {V_\tau } $ is the electron capture region of He+ ion.

    图 2  (a) He+离子与H2O分子碰撞的单电荷转移截面以及(b)不同分子取向对截面的贡献 (a) Rudd等[12]以及Sataka等[13]数据是基于布拉格加和规则得到的截面, Garcia等[15]数据分别是He+离子单电子俘获下产生的H2O+截面以及所有碎片离子截面之和; (b) 方向1, 2, 3分别对应图1(a)(c)三个分子取向

    Figure 2.  (a) SCT cross sections of He+-H2O collisions; (b) SCT cross sections under different molecular orientations. In panel (a), the data of Rudd et al.[12] and Sataka et al.[13] are deduced by the Bragg additivity rule, while the data of Garcia et al.[15] are the cross sections of H2O+ fragments or all ionic fragments produced by the single capture of He+ collisions. Directions 1–3 in panel (b) correspond to the molecular orientations in Fig. 1(a)(c).

    图 3  He+离子不同俘获半径下SCT概率随(a)碰撞参数和(b)模拟时间的变化

    Figure 3.  SCT probabilities as a function of (a) impact parameter and (b) simulation time under different He+ capture radii.

    图 4  He+离子与H2O分子碰撞计算空间内的电子密度分布图

    Figure 4.  Snapshots of the electronic density distribution inside the simulation box for He+-H2O collisions.

    表 1  He+离子与H2O分子不同分子取向下的SCT截面以及平均值

    Table 1.  SCT cross sections of He+-H2O collisions under different molecular orientations and corresponding average values.

    He+离子
    能量E/keV
    单电荷转移截面$ {\sigma _{1, 0}} $/(10–16 cm2)
    方向1 方向2 方向3 平均值
    1.33 6.4895 4.0354 7.3813 5.9687
    6 7.2039 4.9772 6.5549 6.2453
    16 6.7987 5.7614 6.3374 6.2992
    40 5.2655 4.5122 5.6925 5.1567
    100 3.3082 2.3264 2.9646 2.8664
    400 0.7949 0.6441 0.6932 0.71073
    800 0.2321 0.1397 0.1057 0.15917
    1800 0.0226 0.0178 0.0140 0.018133
    DownLoad: CSV
  • [1]

    Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo López-Urrutia J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, Stöhlker T 2019 J. Phys. B 52 171003Google Scholar

    [2]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

    [3]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁 2024 物理学报 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [4]

    牛佳洁, 张唯唯, 祁月盈, 高俊文 2025 物理学报 74 153402Google Scholar

    Niu J J, Zhang W W, Qi Y Y, Gao J W 2025 Acta Phys. Sin. 74 153402Google Scholar

    [5]

    林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维 2025 物理学报 74 152501Google Scholar

    Lin X H, Lin M J, Wang K, Wu Y, Ren Y, Wang Y, Li J W 2025 Acta Phys. Sin. 74 152501Google Scholar

    [6]

    魏宝仁, 张瑞田 2025 中国科学: 物理学 力学 天文学 55 250008Google Scholar

    Wei B R, Zhang R T 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [7]

    Wedlund C S, Bodewits D, Alho M, Hoekstra R, Behar E, Gronoff G, Gunell H, Nilsson H, Kallio E, Beth A 2019 Astron. Astrophys. 630 A35Google Scholar

    [8]

    Fuselier S A, Shelley E G, Goldstein B E, Goldstein R, Neugebauer M, Ip W H, Balsiger H, Rème H 1991 Astrophys. J. 379 734Google Scholar

    [9]

    Greenwood J B, Chutjian A, Smith S J 2000 Astrophys. J. 529 605Google Scholar

    [10]

    Koopman D W 1968 Phys. Rev. 166 57Google Scholar

    [11]

    Rudd M E, Itoh A, Goffe T V 1985 Phys. Rev. A 32 2499Google Scholar

    [12]

    Rudd M E, Goffe T V, Itoh A, DuBois R D 1985 Phys. Rev. A 32 829Google Scholar

    [13]

    Sataka M, Yagishita A, Nakai Y 1990 J. Phys. B 23 1225Google Scholar

    [14]

    Bragg W H, Kleeman R 1905 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 10 318Google Scholar

    [15]

    Garcia P M Y, Sigaud G M, Luna H, Santos A C F, Montenegro E C, Shah M B 2008 Phys. Rev. A 77 052708Google Scholar

    [16]

    Murakami M, Kirchner T, Horbatsch M 2012 Phys. Rev. A 86 022719Google Scholar

    [17]

    Jana D, Purkait K, Halder, Purkait M 2021 Eur. Phys. J. D 75 245Google Scholar

    [18]

    Zhang Y W, Gao J W, Wu Y, Zhou F Y, Wang J G, Sisourat N, Dubois A 2020 Phys. Rev. A 102 022814Google Scholar

    [19]

    Wang F, Hong X H, Wang J, Kim K S 2011 J. Chem. Phys. 134 154308Google Scholar

    [20]

    Yu W D, Gao C Z, Sato S A, Castro A, Rubio A, Wei B R 2021 Phys. Rev. A 103 032816Google Scholar

    [21]

    Hong X H, Wang F, Wu Y, Gou B C, Wang J G 2016 Phys. Rev. A 93 062706Google Scholar

    [22]

    Yu W D, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y, Wei B R 2018 Phys. Rev. A 97 032706Google Scholar

    [23]

    Qin S, Gao C Z, Yu W D, Qu Y Z 2021 Chin. Phys. Lett. 38 063101Google Scholar

    [24]

    Zhang H H, Yu W D, Gao C Z, Qu Y Z 2023 Chin. Phys. Lett. 40 043101Google Scholar

    [25]

    Tancogne-Dejean N, Oliveira M J, Andrade X, Appel Heiko, Borca C H, Breton G L, Buchholz F, Castro A, Corni S, Correa A A, Giovannini U D, Delgado A, Eich F G, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen A H, Lebedeva I V, Lüders M, Marques M A L, Ohlmann S T, Pipolo S, Rampp M, Rozzi C A, Strubbe D A, Sato S A, Schäfer C, Theophilou I, Welden A, Rubio A 2020 J. Chem. Phys. 152 124119Google Scholar

    [26]

    Vignale G 1995 Phys. Rev. Lett. 74 3233Google Scholar

    [27]

    Gómez Pueyo A, Marques M A, Rubio A, Castro A 2018 J. Chem. Theory Comput. 14 3040Google Scholar

    [28]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703Google Scholar

    [29]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [30]

    Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, Pichl L 2003 Phys. Rev. A 68 012716Google Scholar

  • [1] DAI Shuo, LI Zhen, ZHANG Chao, YU Jing, ZHAO Xiaofei, WU Yang, MAN Baoyuan. Surface enhanced Raman spectroscopy effect and mechanism of vertically oriented MoS2 nanosheet composite with Ag substrate. Acta Physica Sinica, 2025, 74(5): 057402. doi: 10.7498/aps.74.20241671
    [2] TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, Yasuhiro Sugawara, TANG Jun, MA Zongmin, LIU Jun. Charge transfer characteristics of Au adsorption on CeO2(111) surface. Acta Physica Sinica, 2025, 74(5): 053101. doi: 10.7498/aps.74.20241522
    [3] NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen. Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms. Acta Physica Sinica, 2025, 74(15): 153402. doi: 10.7498/aps.74.20250541
    [4] LIN Xiaohe, LIN Minjuan, WANG Kun, WU Yong, REN Yuan, WANG Yu, LI Jiewei. Charge transfer cross sections of collisions of N3+ ions with He atoms in low energy region. Acta Physica Sinica, 2025, 74(15): 152501. doi: 10.7498/aps.74.20250581
    [5] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [6] Lu Xiao-Yong, Yuan Cheng, Gao Yang. Numerical research on ion extraction with resonant charge exchange process. Acta Physica Sinica, 2021, 70(14): 145201. doi: 10.7498/aps.70.20210105
    [7] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [8] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [9] Chen Xin, Yan Xiao-Hong, Xiao Yang. Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN. Acta Physica Sinica, 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [10] Gao Jing, Chang Kai-Nan, Wang Lu-Xia. Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system. Acta Physica Sinica, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [11] Zhang Hong, Yin Hai-Feng, Zhang Kai-Biao, Lin Jia-He. Progress of surface plasmon research based on time-dependent density functional theory. Acta Physica Sinica, 2015, 64(7): 077303. doi: 10.7498/aps.64.077303
    [12] Wang Zhi-Ping, Zhu Yun, Wu Ya-Min, Zhang Xiu-Mei. Time-dependent density functional theory studies of dynamics of hydroxy by proton impact. Acta Physica Sinica, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [13] Wang Zhi-Ping, Wu Ya-Min, Lu Chao, Zhang Xiu-Mei, He Yue-Juan. Irradiation of the water molecule by the femtosecond laser field. Acta Physica Sinica, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [14] Wang Zhi-Ping, Chen Jian, Wu Shou-Yu, Wu Ya-Min. Study of carbon atomic wire C5 in the laser field by time-dependent density functional theory. Acta Physica Sinica, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [15] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [16] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [17] Cui Lei, Gu Bin, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] Ma Hua-Li, Li Ying-Lan, Yang Bao-Hua, Wang Feng. Structural and optical properties and charge transfer study for C60-PMMA composite films. Acta Physica Sinica, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] Cao Zhu-Rong, Cai Xiao-Hong, Yu De-Yang, Yang Wei, Lu Rong-Chun, Shao Cao-Jie, Chen Xi-Meng. Study of the electron transfer in Xeq+-He collisions. Acta Physica Sinica, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. CHARGE TRANSFER IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
Metrics
  • Abstract views:  566
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2025
  • Accepted Date:  25 September 2025
  • Available Online:  14 October 2025
  • Published Online:  20 December 2025
  • /

    返回文章
    返回