Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics and enhancement mechanism of hybrid discharge under microstructure-induced electric field distortion

GU Bingbing FANG Junlin XU Shaofeng GUO Ying SHI Jianjun

Citation:

Characteristics and enhancement mechanism of hybrid discharge under microstructure-induced electric field distortion

GU Bingbing, FANG Junlin, XU Shaofeng, GUO Ying, SHI Jianjun
cstr: 32037.14.aps.74.20251303
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to investigate the enhancement mechanism of atmospheric-pressure oxygen pulsed discharge in a parallel-plate dielectric barrier discharge (DBD) with microstructures fabricated on the dielectric surface of the high-voltage electrode, this work systematically analyzes the electron transport processes, the formation and evolution of electric fields, and the spatial distribution of particles by using a two-dimensional fluid model. The introduction of microstructures can cause significant electric field distortion, generating a strong transverse electric field that locally confines and focuses electrons beneath the micro-structured region, leading to the formation of a stable corona-mode discharge. At the same time, the reduced local discharge gap near the microstructure enhances the longitudinal electric field, resulting in a temporal asynchrony between the corona discharge under the microstructure and the parallel-plate discharge in the adjacent flat regions. As the geometric dimensions of the microstructures increase, a secondary discharge is triggered, further modulating the overall discharge behavior. Under conditions where the corona discharge is suppressed by higher protrusions, the occurrence of secondary discharge effectively increases the proportion of high-energy electrons and the spatially averaged density of reactive oxygen atoms. Simulation results reveal that the corona discharge and the secondary discharge significantly raise electron density, electron temperature, and the proportion of high-energy electrons, thereby intensifying the discharge activity. These findings offer deep insight into the micro-mechanisms of microstructure-induced discharge enhancement and provide valuable guidance for designing highly efficient plasma devices with tailored geometric features.
      Corresponding author: GUO Ying, guoying@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175036, 12475259).
    [1]

    He S J, Zhao L F, Ha J, Fan W L, Li Q 2023 Phys. Scr. 98 015615Google Scholar

    [2]

    赵立芬, 哈静, 王非凡, 李庆, 何寿杰 2022 物理学报 71 025201Google Scholar

    Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201Google Scholar

    [3]

    Torbin A P, Demyanov A V, Kochetov I V, Mikheyev P A, Mebel A M 2022 Plasma Sources Sci. Technol. 31 035017Google Scholar

    [4]

    戴芳博, 袁健美, 许凯燕, 郭政, 赵洪泉, 毛宇亮 2021 物理学报 70 178502Google Scholar

    Dai F B, Yuan J M, Xu K Y, Guo Z, Zhao H Q, Mao Y L 2021 Acta Phys. Sin. 70 178502Google Scholar

    [5]

    张海洋 2018 等离子体蚀刻及其在大规模集成电路制造中的应用(北京: 清华大学出版社)第100—110页

    Zhang H Y 2018 Plasma Etching and Its Application in Large Scale Integrated Circuit Manufacturing ((Beijing: Tsinghua University Press) pp100–110

    [6]

    Benyamina M, Belasri A, Khodja K 2014 Ozone: Science & Engineering 36 253

    [7]

    Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [8]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201Google Scholar

    [9]

    Zhang X X, Xiao H Y, Hu X X, Zhang Y 2018 IEEE Trans. Plasma Sci. 46 563Google Scholar

    [10]

    Mao X Q, Zhong H T, Zhang T H, Starikovskiy A, Ju Y G 2022 Combust. Flame 240 112046Google Scholar

    [11]

    Fang J L, Zhang Y Y, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [12]

    刘凯, 方泽, 戴栋 2023 物理学报 72 135201Google Scholar

    Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201Google Scholar

    [13]

    Li M, Zhu B, Yan Y, Li T, Zhu Y M 2018 Plasma Chem. Plasma Process. 38 1063Google Scholar

    [14]

    Liu S, Li J M, Zeng Y Y, Chi F T, Xiao C J 2022 Curr. Appl. Phys. 44 12Google Scholar

    [15]

    Zhou J C, Liao J, Huang J, Chen T Z, Lv B W, Peng Y C 2022 Vacuum 195 110678Google Scholar

    [16]

    Wang X P, Shao T Q, Qin J Y, Li Y L, Long X, Jiang D B, Ding J G 2024 Ozone: Sci. Eng. 46 345Google Scholar

    [17]

    Gu L L, Zhang Y Y, Fang J L, Xu S F, Guo Y, Shi J J 2023 Phys. Plasmas 30 103503Google Scholar

    [18]

    Pokrovskii V S, Repin P B, Trushkina A N 2020 Tech. Phys. 65 182Google Scholar

    [19]

    Zhu M, Hu S Y, Zhang Y H, Wu S Q, Zhang C H 2022 Plasma Sci. Technol. 24 065401Google Scholar

    [20]

    Mujahid Z ul I, Kruszelnicki J, Hala A, Kushner M J 2020 Chem. Eng. J 382 123038Google Scholar

    [21]

    Mujahid Z ul I, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [22]

    Jodpimai S, Boonduang S, Limsuwan P 2015 J. Electrostat. 74 108Google Scholar

    [23]

    Berger B, Mujahid Z, Neuroth C, Azhar M, Wang L, Zhang Q Z, Mussenbrock T, Korolov I, Schulze J 2024 Plasma Sources Sci. Technol. 33 125011Google Scholar

    [24]

    Fang J J, Gu B B, Xu S F, Mei Y F, Guo Y, Shi J J 2025 Appl. Phys. Lett. 127 074101Google Scholar

    [25]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [26]

    Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201Google Scholar

    [27]

    Liu Y, Korolov I, Trieschmann J, et al. 2021 Plasma Sources Sci. Technol. 30 064001Google Scholar

    [28]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [29]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [30]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [31]

    Mennad B, Harrache Z, Amir Aid D, Belasri A 2010 Curr. Appl. Phys. 10 1391Google Scholar

    [32]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [33]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [34]

    He J, Zhang Y T 2012 Plasma Processes Polym. 9 919Google Scholar

    [35]

    Jeong S Y, Nam W J, Lee J K, Yun G S 2018 J. Phys. D: Appl. Phys. 51 454001Google Scholar

    [36]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [37]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [38]

    Gaens W V, Bogaerts A 2013 J. Phys. D: Appl. Phys. 46 275201Google Scholar

  • 图 1  (a) 平行板模型; (b) 表面凸起微结构模型; (c) h = 0 mm, h = 0.04 mm电压电流密度

    Figure 1.  (a) Parallel plate model; (b) surface protruding microstructure model; (c) voltage current density when h = 0 mm and 0.04 mm.

    图 2  (a1)—(a3) 电晕空间0.131, 0.135, 0.140 μs电子密度空间演化; (b) 0.140 μs“类电晕空间”电子温度空间分布; (c) y = 0.006 mm, 0.135 μs的纵向电场(Ey)分布; (d) y = 0.006 mm, 0.135 μs的纵向通量及正负粒子的空间分布; (e1), (e2) 放电过程中的横向电场(Ex)及横向迁移

    Figure 2.  (a1)–(a3) Evolution of spatial electron distribution in corona space at 0.131, 0.135, 0.140 μs; (b) electron energy in corona space at 0.140 μs; (c) the Ey along y = 0.006 mm at 0.135 μs; (d) longitudinal flux and the spatial distribution of positive and negative particles; (e1), (e2) the Ex and transverse flux during the discharge process.

    图 3  (a), (b) 平板空间0.135, 0.140 μs电子密度空间演化; (c) 0.140 μs平板空间电子温度空间分布; (c) y = 0.006 mm, 0.135 μs电子能量的空间分布

    Figure 3.  (a), (b) Evolution of spatial electron distribution in parallel plate space at 0.135, 0.140 μs; (c) electron energy along y = 0.006 mm at 0.135 μs.

    图 4  (a) 平行板结构及表面微结构凸起高度h = 0.04 mm的空间平均氧原子数密度; (b) 产生氧原子反应的反应速率和电子温度变化; (c) 与平行板结构相比表面凸起微结构h = 0.04 mm时氧原子的增强与减弱区

    Figure 4.  (a) The spatial average oxygen density of the parallel plate structure and the surface micro-structure protrusions with a height of h = 0.04 mm; (b) reaction rate and electron temperature dependence in oxygen atom production; (c) enhanced and weakened regions of oxygen compared with parallel plate discharge.

    图 5  (a) 电子密度和电流密度幅值随凸起高度的变化; (b) y = 0.02 mm横向电场随高度的变化; (c) 空间平均氧原子数密度及高能电子数量占比随h的变化; (d) h = 0 mm, h = 0.11 mm上升沿电压电流密度

    Figure 5.  (a) The variation of peak electron and current densities with h; (b) the variation of Ex with h along y = 0.02 mm; (c) the variation of spatial average oxygen density and the proportion of high-energy electrons with h; (d) the rising edge of voltage and current density at h = 0 mm and h = 0.11 mm.

    图 6  (a1), (a2) h = 0.08 mm, 0.157 μs二次放电的电子密度空间分布; (b1), (b2) h = 0.11 mm, 0.151 μs二次放电的电子密度空间分布; (c), (d) 空间电场分布

    Figure 6.  (a1), (a2) Spatial electron density distribution when h = 0.08 mm and 0.157 μs; (b1), (b2) spatial electron density distribution when h = 0.11 mm and 0.151 μs; (c), (d) spatial electric field distribution.

    表 A1  反应方程和速率[26-38]

    Table A1.  Elementary reaction and rates[26-38].

    反应 反应速率 反应 反应速率
    e + O2 → O + O f(Te) e + O2 → O2(a1Δg) + e $ 1.7 \times {10}^{-15}\exp \left(-{3.1}/{{T}_{\rm e}}\right) $
    e + O2(a1Δg) → O2 + e $ 5.6 \times {10}^{-15}\exp \left(-{2.2}/{{T}_{\rm e}}\right) $ e + O2 → O + O(1D) + e $ 5.0 \times {10}^{-14}\exp \left(-{8.4}/{{T}_{\rm e}}\right) $
    e + O → O(1D) + e $ 4.2 \times {10}^{-15}\exp \left(-{2.25}/{{T}_{\rm e}}\right) $ $\rm e + O_2 → O_2^ + + 2e $ f(Te)
    e + O2 → 2O + e $ 4.2 \times {10}^{-14}\exp \left(-{5.6}/{{T}_{\rm e}}\right) $ e + O(1D) → O + e $ 8.17 \times {10}^{-15}\exp \left(-{0.4}/{{T}_{\rm e}}\right) $
    e + O2 → O + O + + e $ 7.1 \times {10}^{-17}{T}_{\mathrm{e}}^{0.5}\exp \left(-{17}/{{T}_{\rm e}}\right) $ e + O → O + + 2e f(Te)
    e + O2 → O + + O + 2e $ 1.0 \times {10}^{-16}{T}_{\mathrm{e}}^{0.9}\exp \left(-{20}/{{T}_{\rm e}}\right) $ e + O2 → O2 + e f(Te)
    e + O(1D) → O + + 2e $ 9.0 \times {10}^{-16}{T}_{\mathrm{e}}^{0.7}\exp \left(-{11.6}/{{T}_{\rm e}}\right) $ e + O2(a1Δg) → O + O $ 2.3 \times {10}^{-16}{T}_{\mathrm{e}}^{2}\exp \left(-{2.29}/{{T}_{\rm e}}\right) $
    $ {\mathrm{e}} + {\mathrm{O}}_2({\mathrm{a}}^1\Delta_{\mathrm{g}})\to{\mathrm{O}}_2^ + + 2{\mathrm{e}} $ $ 2.3 \times {10}^{-16}{T}_{\mathrm{e}}^{1.03}\exp \left(-{11.31}/{{T}_{\rm e}}\right) $ e + O2(a1Δg) → 2O + e $ 4.2 \times {10}^{-16}\exp \left(-{4.6}/{{T}_{\rm e}}\right) $
    e+O2(a1Δg) → O+O+ +2e $ 1.0 \times {10}^{-16}{T}_{\mathrm{e}}^{1}\exp \left(-{15.83}/{{T}_{\rm e}}\right) $ e + O → O + 2e f(Te)
    $\rm e + O_2^ + \to O + O(^1D) $ $ 2.2 \times {10}^{-14}{T}_{\mathrm{e}}^{-0.5} $ $\rm e + O_2^ + \to 2O $ $ 1.2 \times {10}^{-14}{T}_{\mathrm{e}}^{-0.7} $
    $\rm e + O_3\to O_2^- + O $ $ 9.76 \times {10}^{-16}{T}_{\mathrm{e}}^{-1.26}\exp \left(-{0.95}/{{T}_{\rm e}}\right) $ e + O3 → O2 + O + e $ 1.42 \times {10}^{-14}{T}_{\mathrm{e}}^{-0.68}\exp \left(-{2.6}/{{T}_{\rm e}}\right) $
    O + O → O2 + e $ 2.3 \times {10}^{-16}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.3} $ O + O2 → O3 + e 5.0×10–21
    O + O2(a1Δg) → O3 + e 6.1×10–17 ${\mathrm{O}}_2^- + {\mathrm{O}}_2({\mathrm{a}}^1\Delta_{\mathrm{g}})\to 2{\mathrm{O}}_2 + {\mathrm{e}} $ $ 2.0 \times {10}^{-16}{\left({{T}_{{\rm g}}}/{300}\right)}^{0.5} $
    $\rm O + O_2^-\to O_3 + e $ $ 8.5 \times {10}^{-17}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.8} $ $\rm O_2 + O^ + \to O_2^ + + O $ $ 2.1 \times {10}^{-17}{\left({{T}_{{\rm g}}}/{300}\right)}^{-0.4} $
    O2 + O → O + O2 3.3×10–16 ${\mathrm{O}}^- + {\mathrm{O}}_2({\mathrm{a}}^1\Delta_{\mathrm{g}})\to {\mathrm{O}}_2^- + {\mathrm{O}} $ 1.0×10–16
    $\rm O^- + O_2^ + \to O_2 + O $ $ 1.61 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $ $\rm O^- + O_2^ + \to 3O $ $ 1.61 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $
    O + O + → 2O $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1} $ O + O3 → e + 2O2 3.0×10–16
    $\rm O^- + O_3\to O_2 + O_2^- $ 1.0×10–17 $\rm O_2^ + + O^- + O_2\to O + 2O_2 $ $ 1.0 \times {10}^{-37}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.5} $
    $\rm O_2^ + + O^- + O_2\to O_3 + O_2 $ $ 1.0 \times {10}^{-37}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.5} $ $\rm O_2^ + + O_2^- + O_2 → 3O_2 $ $ 1.0 \times {10}^{-37}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.5} $
    $\rm O_2^- + O_2^ + \to 2O_2 $ $ 1.6 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $ $\rm O_2^- + O_2^ + \to 2O + O_2 $ $ 1.6 \times {10}^{-14}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1.1} $
    $\rm O_2^- + O^ + \to O + O_2 $ $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-0.5} $ O + O2 + O2 → O3 + O2 $ 1.8 \times {10}^{-46}{\left({{T}_{{\rm g}}}/{300}\right)}^{-2.6} $
    O2(a1Δg) + O → O2 + O 1.3×10–22 O + O + O → O + O2 $ 3.8 \times {10}^{-44}\left({{T}_{{\rm g}}}/{300}\right)\exp \left({-170}/{{T}_{{\rm g}}}\right) $
    O + O + O2 → O3 + O $ 4.2 \times {10}^{-47}\left({1050}/{{T}_{{\rm g}}}\right) $ O(1D) + O2 → O + O2 $ 7.0 \times {10}^{-18}\left(-{67}/{{T}_{{\rm g}}}\right) $
    O(1D) + O3 → 2O2 1.2×10–16 O(1D) + O3 → 2O2(a1Δg) 2.5×10–16
    O(1D) + O3 → O2 + O2(a1Δg) 2.5×10–16 O(1D) + O3 → 2O + O2 2.5×10–16
    O2 + O2(a1Δg) → 2O2 $ 3.6 \times {10}^{-24}\exp \left(-{220}/{{T}_{{\rm g}}}\right) $ O2(a1Δg) + O3 → 2O2 + O $ 5.2 \times {10}^{-17}\exp \left(-{2840}/{{T}_{{\rm g}}}\right) $
    O2(a1Δg) + O3 → O2 + O3 $ 4.55 \times {10}^{-17}\exp \left(-{2810}/{{T}_{{\rm g}}}\right) $ O3 + O3 → O2 + O + O3 $ 1.65 \times {10}^{-15}\exp \left(-{11435}/{{T}_{{\rm g}}}\right) $
    O3 + O3 → 3O2 $ 7.47 \times {10}^{-18}\exp \left(-{9310}/{{T}_{{\rm g}}}\right) $ O3 + O2 → 2O2 + O $ 1.56 \times {10}^{-15}\exp \left(-{11490}/{{T}_{{\rm g}}}\right) $
    O3 + O → 2O2 $ 1.80 \times {10}^{-17}\exp \left(-{2300}/{{T}_{{\rm g}}}\right) $ $\rm O_3 + O^-\to O_3^- + O $ $ 1.99 \times {10}^{-16}{\left({300}/{{T}_{{\rm g}}}\right)}^{-0.5} $
    $\rm O_3 + O_2^-\to O_2 + O_3^- $ $ 6.0 \times {10}^{-16}{\left({300}/{{T}_{{\rm g}}}\right)}^{-0.5} $ $\rm O_3^- + O_2^ + \to O_2 + O_3 $ $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1} $
    $\rm O_3^- + O_2^ + \to 2O + O_3 $ 1.0×10–13 $\rm O_3^- + O^ + \to O + O_3 $ $ 2.0 \times {10}^{-13}{\left({{T}_{{\rm g}}}/{300}\right)}^{-1} $
    $\rm O_3^- + O\to O_2^- + O_2 $ $ 2.5 \times {10}^{-16}{\left({300}/{{T}_{{\rm g}}}\right)}^{-0.5} $ $\rm O_3^- + O\to 2O_2 + e $ 3×10–16
    注: f(Te)表示该截面适用于相关反应; 二体反应的反应速率常数单位为m3/s, 三体反应的反应速率常数单位为m6/s; Te是电子温度单位为eV, Tg温度单位为K
    DownLoad: CSV
  • [1]

    He S J, Zhao L F, Ha J, Fan W L, Li Q 2023 Phys. Scr. 98 015615Google Scholar

    [2]

    赵立芬, 哈静, 王非凡, 李庆, 何寿杰 2022 物理学报 71 025201Google Scholar

    Zhao L F, Ha J, Wang F F, Li Q, He S J 2022 Acta Phys. Sin. 71 025201Google Scholar

    [3]

    Torbin A P, Demyanov A V, Kochetov I V, Mikheyev P A, Mebel A M 2022 Plasma Sources Sci. Technol. 31 035017Google Scholar

    [4]

    戴芳博, 袁健美, 许凯燕, 郭政, 赵洪泉, 毛宇亮 2021 物理学报 70 178502Google Scholar

    Dai F B, Yuan J M, Xu K Y, Guo Z, Zhao H Q, Mao Y L 2021 Acta Phys. Sin. 70 178502Google Scholar

    [5]

    张海洋 2018 等离子体蚀刻及其在大规模集成电路制造中的应用(北京: 清华大学出版社)第100—110页

    Zhang H Y 2018 Plasma Etching and Its Application in Large Scale Integrated Circuit Manufacturing ((Beijing: Tsinghua University Press) pp100–110

    [6]

    Benyamina M, Belasri A, Khodja K 2014 Ozone: Science & Engineering 36 253

    [7]

    Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donkó Z, Schulze J 2020 Plasma Sources Sci. Technol. 29 025019Google Scholar

    [8]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201Google Scholar

    [9]

    Zhang X X, Xiao H Y, Hu X X, Zhang Y 2018 IEEE Trans. Plasma Sci. 46 563Google Scholar

    [10]

    Mao X Q, Zhong H T, Zhang T H, Starikovskiy A, Ju Y G 2022 Combust. Flame 240 112046Google Scholar

    [11]

    Fang J L, Zhang Y Y, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [12]

    刘凯, 方泽, 戴栋 2023 物理学报 72 135201Google Scholar

    Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201Google Scholar

    [13]

    Li M, Zhu B, Yan Y, Li T, Zhu Y M 2018 Plasma Chem. Plasma Process. 38 1063Google Scholar

    [14]

    Liu S, Li J M, Zeng Y Y, Chi F T, Xiao C J 2022 Curr. Appl. Phys. 44 12Google Scholar

    [15]

    Zhou J C, Liao J, Huang J, Chen T Z, Lv B W, Peng Y C 2022 Vacuum 195 110678Google Scholar

    [16]

    Wang X P, Shao T Q, Qin J Y, Li Y L, Long X, Jiang D B, Ding J G 2024 Ozone: Sci. Eng. 46 345Google Scholar

    [17]

    Gu L L, Zhang Y Y, Fang J L, Xu S F, Guo Y, Shi J J 2023 Phys. Plasmas 30 103503Google Scholar

    [18]

    Pokrovskii V S, Repin P B, Trushkina A N 2020 Tech. Phys. 65 182Google Scholar

    [19]

    Zhu M, Hu S Y, Zhang Y H, Wu S Q, Zhang C H 2022 Plasma Sci. Technol. 24 065401Google Scholar

    [20]

    Mujahid Z ul I, Kruszelnicki J, Hala A, Kushner M J 2020 Chem. Eng. J 382 123038Google Scholar

    [21]

    Mujahid Z ul I, Korolov I, Liu Y, Mussenbrock T, Schulze J 2022 J. Phys. D: Appl. Phys. 55 495201Google Scholar

    [22]

    Jodpimai S, Boonduang S, Limsuwan P 2015 J. Electrostat. 74 108Google Scholar

    [23]

    Berger B, Mujahid Z, Neuroth C, Azhar M, Wang L, Zhang Q Z, Mussenbrock T, Korolov I, Schulze J 2024 Plasma Sources Sci. Technol. 33 125011Google Scholar

    [24]

    Fang J J, Gu B B, Xu S F, Mei Y F, Guo Y, Shi J J 2025 Appl. Phys. Lett. 127 074101Google Scholar

    [25]

    Polonskyi O, Hartig T, Uzarski J R, Gordon M J 2021 Appl. Phys. Lett. 119 211601Google Scholar

    [26]

    Walsh J L, Iza F, Janson N B, Law V J, Kong M G 2010 J. Phys. D: Appl. Phys. 43 075201Google Scholar

    [27]

    Liu Y, Korolov I, Trieschmann J, et al. 2021 Plasma Sources Sci. Technol. 30 064001Google Scholar

    [28]

    Park G, Lee H, Kim G, Lee J K 2008 Plasma Processes Polym. 5 569Google Scholar

    [29]

    Lazzaroni C, Chabert P 2016 Plasma Sources Sci. Technol. 25 065015Google Scholar

    [30]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [31]

    Mennad B, Harrache Z, Amir Aid D, Belasri A 2010 Curr. Appl. Phys. 10 1391Google Scholar

    [32]

    Stafford D S, Kushner M J 2004 J. Appl. Phys. 96 2451Google Scholar

    [33]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [34]

    He J, Zhang Y T 2012 Plasma Processes Polym. 9 919Google Scholar

    [35]

    Jeong S Y, Nam W J, Lee J K, Yun G S 2018 J. Phys. D: Appl. Phys. 51 454001Google Scholar

    [36]

    Yanallah K, Pontiga F, Fernández-Rueda A, Castellanos A, Belasri A 2008 J. Phys. D: Appl. Phys. 41 195206Google Scholar

    [37]

    Bogdanov E A, Kudryavtsev A A, Tsendin L D, Arslanbekov R R, Kolobov V I, Kudryavtsev V V 2003 Tech. Phys. 48 983Google Scholar

    [38]

    Gaens W V, Bogaerts A 2013 J. Phys. D: Appl. Phys. 46 275201Google Scholar

  • [1] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [2] Kong De-Lin, Yang Bing-Yan, He Feng, Han Ruo-Yu, Miao Jin-Song, Song Ting-Lu, Ouyang Ji-Ting. Deposition of titanium oxide films by atmospheric pressure corona discharge plasma jet. Acta Physica Sinica, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [3] Chai Yu, Zhang Ni, Liu Jie, Yin Ning, Liu Shu-Lin, Zhang Jing-Yuan. Two-dimensional simulation of dynamic characteristics of N2–O2 corona discharge at micro scale. Acta Physica Sinica, 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [4] Lu Nai-Yan, Yu Xue-Jian, Wan Jia-Wei, Weng Yu-Yan, Guo Jun-Hong, Liu Yu. Surface plasmon resonance coupling effect of micro-patterned gold film. Acta Physica Sinica, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [5] Hua Ye, Wan Hong, Chen Xing-Yu, Wu Ping, Bai Shu-Xin. Influence of surface microstructure on explosive electron emission properties of graphite cathode doped by silicon carbide whiskers. Acta Physica Sinica, 2016, 65(16): 168102. doi: 10.7498/aps.65.168102
    [6] Wang Chao, Hao Zhi-Biao, Wang Lei, Kang Jian-Bin, Xie Li-Li, Luo Yi, Wang Lai, Wang Jian, Xiong Bing, Sun Chang-Zheng, Han Yan-Jun, Li Hong-Tao, Wang Lu, Wang Wen-Xin, Chen Hong. Improvement on the efficiency of up-conversion infrared photodetectors using surface microstructure. Acta Physica Sinica, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [7] Sima Wen-Xia, Fan Shuo-Chao, Yang Qing, Wang Qi. Numerical simulation of positive glow corona discharge initiated from long ground wire under thundercloud field. Acta Physica Sinica, 2015, 64(10): 105205. doi: 10.7498/aps.64.105205
    [8] Wang Yu-Ying, Yan Da-Wei, Tan Xiu-Lan, Wang Xue-Min, Gao Yang, Peng Li-Ping, Yi You-Gen, Wu Wei-Dong. Fabrication and X-ray photoemission characteristics of Au spherical shell photocathodes. Acta Physica Sinica, 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [9] Zhang Kai, Lu Yong-Jun, Wang Feng-Hui. Motion of the nanodrops driven by energy gradient on surfaces with different microstructures. Acta Physica Sinica, 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [10] Wang Wei, Yang Lan-Jun, Liu Shuai, Huang Yi-Zhi, Huang Dong, Wu Kai. Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configration. Acta Physica Sinica, 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [11] Wu Fei-Fei, Liao Rui-Jin, Yang Li-Jun, Liu Xing-Hua, Wang Ke, Zhou Zhi. Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge. Acta Physica Sinica, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [12] Liu Lei, Li Yong-Dong, Wang Rui, Cui Wan-Zhao, Liu Chun-Liang. Particle-in-cell simulation of corona discharge in low pressure in stepped impedance transformer. Acta Physica Sinica, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [13] He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Physica Sinica, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [15] Jiang Xiang-Zhan, Liu Yong-Xin, Bi Zhen-Hua, Lu Wen-Qi, Wang You-Nian. Radial density uniformity of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [16] Zhai Xiao-Dong, Ding Yan-Jun, Peng Zhi-Min, Luo Rui. Theoretical and experimental study of emission spectrum of the second positive system of N2. Acta Physica Sinica, 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [17] Yuan Chun-Hua, Li Xiao-Hong, Tang Duo-Chang, Yang Hong-Dao, Li Guo-Qiang. Evolution of silicon surface microstructure induced by Nd:YAG nanosecond laser. Acta Physica Sinica, 2010, 59(10): 7015-7019. doi: 10.7498/aps.59.7015
    [18] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [19] Qi Bing, Ren Chun-Sheng, Ma Teng-Cai, Wang You-Nian, Wang De-Zhen. Stabilization of the multi-pin to multi-sphere plane negative corona discharge. Acta Physica Sinica, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
    [20] LAI JIAN-JUN, YU JIAN-HUA, HUANG JIAN-JUN, WANG XIN-BING, QIU JUN-LIN. SELF-CONSISTENT DESCRIPTION OF A DC HOLLOW CATHODE DISCHARGE AND ANALYSIS OF CATHODE SPUTTERING. Acta Physica Sinica, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
Metrics
  • Abstract views:  206
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2025
  • Accepted Date:  13 November 2025
  • Available Online:  15 November 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回