Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gyro-kinetic analysis of electromagnetic geodesic acoustic modes in tokamak plasmas

CHEN Zhe REN Haijun WANG Hao

Citation:

Gyro-kinetic analysis of electromagnetic geodesic acoustic modes in tokamak plasmas

CHEN Zhe, REN Haijun, WANG Hao
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Geodesic acoustic modes (GAMs), the high-frequency branch of zonal flows, play a crucial role in regulating turbulence and the associated anomalous transport in tokamaks. Although often treated as electrostatic oscillations, GAMs intrinsically possess an electromagnetic component, manifested as magnetic field perturbations. This component is essential for GAM's interaction with electromagnetic turbulence and for the existence of global GAM eigenmodes. However, a long-standing discrepancy exists between magnetohydrodynamic (MHD) and gyro-kinetic theories regarding the three-dimensional (3D) structure of these perturbations. MHD models consistently predict a full 3D structure, with dominant $m=2$ components in the radial and poloidal magnetic field perturbations and dominant $m=1$ component in the toroidal magnetic field perturbation, where $m$ denotes the poloidal wavenumber. In contrast, most gyro-kinetic studies, adopting the conventional parallel vector potential approximation ($\delta\vec{A} \approx \delta A_\|\vec{b}$), are restricted to describing only the $m=2$ poloidal component while systematically neglecting the radial and parallel (toroidal) components. This limitation has created a theoretical gap, preventing a unified understanding of the electromagnetic nature of GAMs.
    To address this issue, we employ a self-consistent electromagnetic gyro-kinetic model without invoking the parallel vector potential approximation. Starting from the linear electromagnetic gyro-kinetic equation, we describe the perturbed distribution functions of both ions and electrons. The model is closed with a self-consistent set of field equations—including the quasi-neutrality condition and both the parallel and perpendicular components of Ampère’s law—which determine the evolution of the electrostatic potential $\delta\phi$, the parallel vector potential $\delta A_\|$, and the parallel magnetic perturbation $\delta B_\|$ (associated with the perpendicular vector potential $\delta A_\perp$). By retaining the full perturbed magnetic vector potential $\delta\vec{A}$, the framework naturally incorporates both parallel current perturbations (linked to $\delta A_\|$) and diamagnetic effects (linked to $\delta B_\|$). Analytical solutions are obtained in the long-wavelength limit for a large-aspect-ratio, circular tokamak, including first-order finite-Larmor-radius (FLR) and finite-orbit-width (FOW) effects.
    For the first time within a gyro-kinetic framework, our analysis yields the complete 3D magnetic perturbation structure of the electromagnetic GAM. The results explicitly demonstrate that the radial ($\delta B_r$) and poloidal ($\delta B_\theta$) perturbations exhibit a dominant $m=2$ standing-wave structure, while the parallel perturbation ($\delta B_\|$) exhibits a dominant $m=1$ structure. This spatial structure is in excellent qualitative agreement with the predictions of ideal MHD theory, thereby resolving the long-standing discrepancy between the two theoretical approaches. Moreover, the gyro-kinetic model provides a refined physical picture beyond the reach of single-fluid MHD. The analytical expressions reveal distinct roles of ions and electrons: the $m=2$ radial and poloidal magnetic field perturbations, associated with parallel currents, are more strongly influenced by the ion thermal pressure, whereas the $m=1$ parallel magnetic field perturbation, linked to diamagnetic effects, receives a relatively larger contribution from the electron thermal pressure. These results not only unify the theoretical description of GAM magnetic perturbations but also advance our understanding of their kinetic physics, offering a more accurate foundation for experimental diagnostics and numerical simulation.
  • [1]

    Lin Z, Hahm T S, Lee W W, Tang W M, White R B 1998 Science 281 1835

    [2]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

    [3]

    Winsor N, Johnson J L, Dawson J M 1968 Phys. Fluids 11 2448

    [4]

    Conway G D, Smolyakov A I, Ido T 2022 Nucl. Fusion 62 013001

    [5]

    Falchetto G L, Ottaviani M, Garbet X, Smolyakov A 2007 Phys. Plasmas 14 082304

    [6]

    Chakrabarti N, Singh R, Kaw P K, Guzdar P N 2007 Phys. Plasmas 14 052308

    [7]

    Hong W Y, Yan L W, Zhao K J, Lan T, Dong J Q, Yu C X, Cheng J, Qian J, Liu A D, Luo C W, Xu Z Y, Huang Y, Yang Q W 2008 Acta Phys. Sin. 57 962 (in Chinese) [洪文玉,严龙文,赵开君, 兰涛,董家齐,俞昌旋,程均,钱俊,刘阿棣,罗萃文,徐征宇,黄渊,杨青巍 2008 物理学报 57 962]

    [8]

    Sasaki M, Itoh K, Nagashima Y, Ejiri A, Takase Y 2009 Phys. Plasmas 16 022306

    [9]

    Hallatschek K, Biskamp D 2001 Phys. Rev. Lett. 86 1223

    [10]

    Hahm T S, Beer M A, Lin Z, Hammett G W, Lee W W, Tang W M 1999 Phys. Plasmas 6 922

    [11]

    Hamada Y, Watari T, Nishizawa A, Yamagishi O, Narihara K, Kawasumi Y, Ido T, Kojima M, Toi K 2010 Nucl. Fusion 50 025001

    [12]

    Holland C, Tynan G R, Fonck R J, McKee G R, Candy J, Waltz R E 2007 Phys. Plasmas 14 056112

    [13]

    Scott B 2003 Phys. Lett. A 320 53

    [14]

    Miyato N, Kishimoto Y, Li J 2004 Phys. Plasmas 11 5557

    [15]

    Fu G Y 2008 Phys. Rev. Lett. 101 185002

    [16]

    Nazikian R, Fu G Y, Austin M E, Berk H L, Budny R V, Gorelenkov N N, Heidbrink W W, Holcomb C T, Kramer G J, McKee G R 2008 Phys. Rev. Lett. 101 185001

    [17]

    Wei G Y, Chen N F, Qiu Z Y 2022 Acta Phys. Sin. 71 015201 (in Chinese) [魏广宇,陈凝飞,仇志 勇 2022 物理学报 71 015201]

    [18]

    Fisher R K, Pace D C, Kramer G J, Van Zeeland M A, Nazikian R, Heidbrink W W, García-Muñoz M 2012 Nucl. Fusion 52 123015

    [19]

    Zarzoso D, Del-Castillo-Negrete D, Escande D F, Sarazin Y, Garbet X, Grandgirard V, Passeron C, Latu G, Benkadda S 2018 Nucl. Fusion 58 106030

    [20]

    Sasaki M, Itoh K, Itoh S I 2011 Plasma Phys. Control. Fusion 53 085017

    [21]

    Zarzoso D, Biancalani A, Bottino A, Lauber P, Poli E, Girardo J B, Garbet X, Dumont R J 2014 Nucl. Fusion 54 103006

    [22]

    Wang H, Todo Y, Osakabe M, Ido T, Suzuki Y 2019 Nucl. Fusion 59 096041

    [23]

    Wang H, Todo Y, Osakabe M, Ido T, Suzuki Y 2020 Nucl. Fusion 60 112007

    [24]

    Osakabe M, et al. 2014 In Proceedings of the 25th IAEA International Conference on Fusion Energy (St Petersburg, Russian Federation: International Atomic Energy Agency). Paper EX/10-3

    [25]

    Ren H 2014 Phys. Plasmas 21 064502

    [26]

    Zhou D 2007 Phys. Plasmas 14 104502

    [27]

    Wahlberg C 2008 Phys. Rev. Lett. 101 115003

    [28]

    Wahlberg C 2009 Plasma Phys. Control. Fusion 51 085006

    [29]

    Wang L, Dong J Q, Shen Y, He H D 2011 Phys. Plasmas 18 052506

    [30]

    Wahlberg C, Graves J P 2016 Plasma Phys. Control. Fusion 58 075014

    [31]

    Huang W, Ren H, Xu X Q 2019 Phys. Plasmas 26 022506

    [32]

    Chen Z, Ren H, Wang H, Roach C M 2025 Plasma Phys. Control. Fusion 67 045008

    [33]

    Xie B, Ye L, Chen Y, Zhao P, Guo W, Xiang N 2022 Plasma Phys. Control. Fusion 64 095009

    [34]

    Guo W, Ma J 2024 Plasma Phys. Control. Fusion 66 035005

    [35]

    De Meijere C A, Coda S, Huang Z, Vermare L, Vernay T, Vuille V, Brunner S, Dominski J, Hennequin P, Krämer-Flecken A 2014 Plasma Phys. Control. Fusion 56 072001

    [36]

    Bulanin V V, Gusev V K, Iblyaminova A D, Khromov N A, Kurskiev G S, Minaev V B, Patrov M I, Petrov A V, Petrov Y V, Sakharov N V 2015 Nucl. Fusion 56 016017

    [37]

    Seidl J, Krbec J, Hron M, Adamek J, Hidalgo C, Markovic T, Melnikov A V, Stockel J, Weinzettl V, Aftanas M 2017 Nucl. Fusion 57 126048

    [38]

    Wang M Y, Zhou C, Liu A D, Zhang J, Liu Z Y, Feng X, Ji J X, Li H, Lan T, Xie J L 2018 Phys. Plasmas 25 102508

    [39]

    Lin D J, Heidbrink W, Crocker N, Du X, Nazikian R, Van Zeeland M, Barada K 2022 Nucl. Fusion 62 112010

    [40]

    Berk H L, Boswell C J, Borba D, Figueiredo A C A, Johnson T, Nave M F F, Pinches S D, Sharapov S E 2006 Nucl. Fusion 46 S888

    [41]

    Boswell C J, Berk H L, Borba D N, Johnson T, Pinches S D, Sharapov S E 2006 Phys. Lett. A 358 154

    [42]

    Ilgisonis V I, Khalzov I V, Lakhin V P, Smolyakov A I, Sorokina E A 2014 Plasma Phys. Control. Fusion 56 035001

    [43]

    Lakhin V P, Sorokina E A 2014 Phys. Lett. A 378 535

    [44]

    Smolyakov A I, Nguyen C, Garbet X 2008 Plasma Phys. Control. Fusion 50 115008

    [45]

    Melnikov A V, Eliseev L G, Lysenko S E, Ufimtsev M V, Zenin V N 2017 Nucl. Fusion 57 115001

    [46]

    Riggs G A, Nogami S H, Koepke M E, Melnikov A V, Eliseev L G, Lysenko S E, Khabanov P O, Drabinskij M A, Kharchev N K, Kozachek A S 2021 J. Plasma Phys. 87 885870301

    [47]

    Kennedy D, Roach C M, Giacomin M, Ivanov P, Adkins T, Sheffeld F, Görler T, Bokshi A, Dickinson D, Dudding H G 2024 Nucl. Fusion 64 086049

    [48]

    Frieman E A, Chen L 1982 Phys. Fluids 25 502

    [49]

    Gao Z, Itoh K, Sanuki H, Dong J Q 2006 Phys. Plasmas 13 100702

    [50]

    Ren H 2015 Phys. Plasmas 22 072502

    [51]

    Chen Z, Li Y, Ren H, Wang H 2025 Nucl. Fusion 65 044001

  • [1] LIU Zanqi, LUO Yuan, WENG Wanliang, HE Qing, TAO Shi. Discrete unified gas kinetic simulation of characteristics of variable temperature wall driven thermal creep flow in cavity. Acta Physica Sinica, doi: 10.7498/aps.74.20241334
    [2] ZHAO Yueyue, MIAO Yang, YANG Wei, DU Chengran. Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma. Acta Physica Sinica, doi: 10.7498/aps.74.20251096
    [3] ZHANG Chuang, GUO Zhaoli. Discrete unified gas kinetic scheme and its application in multi-scale heat conduction. Acta Physica Sinica, doi: 10.7498/aps.74.20250694
    [4] Liu Qing-Kang, Zhang Xu, Cai Hong-Bo, Zhang En-Hao, Gao Yan-Qi, Zhu Shao-Ping. Suppression of stimulated Raman scattering kinetic bursts by intensity-modulated broadband laser. Acta Physica Sinica, doi: 10.7498/aps.73.20231679
    [5] Luo Xiao-Li, Gao Jian-Hua. Non-Abelian chiral kinetic equations in the Cartan-Weyl basis. Acta Physica Sinica, doi: 10.7498/aps.72.20222471
    [6] Zhou Li-Na, Hu Han-Qing, Liu Yue-Qiang, Duan Ping, Chen Long, Zhang Han-Yu. Modelling study of fluid and kinetic responses of plasmas to resonant magnetic perturbation. Acta Physica Sinica, doi: 10.7498/aps.72.20222196
    [7] Ma Rui-Rui, Chen Liu, Qiu Zhi-Yong. Theoretical studies of low-frequency shear Alfvén waves in reversed shear tokamak plasmas. Acta Physica Sinica, doi: 10.7498/aps.72.20230255
    [8] Yang Li-Xia, Liu Chao, Li Qing-Liang, Yan Yu-Bo. Electromagnetic wave propagation characteristics of oblique incidence nonlinear ionospheric Langmuir disturbance. Acta Physica Sinica, doi: 10.7498/aps.71.20211204
    [9] Fan Si-Chen, Yang Fan, Ruan Jun. Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator. Acta Physica Sinica, doi: 10.7498/aps.71.20221156
    [10] Wei Guang-Yu, Chen Ning-Fei, Qiu Zhi-Yong. Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, doi: 10.7498/aps.71.20211430
    [11] Wu Yong-Cun, Yang Xing-Lin, Shi Jin-Shui, Zhao Liang-Chao, He Xiao-Zhong. Tuning of cyclotron resonant frequency and magnetic field of medical cyclotron. Acta Physica Sinica, doi: 10.7498/aps.68.20190116
    [12] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, doi: 10.7498/aps.63.085207
    [13] Guan Wei, Hu Heng-Shan, Chu Zhao-Tan. Formulation of the acoustically-induced electromagnetic field in a porous formation in terms of Hertz vectors and simulation of the borehole electromagnetic field excited by an acoustic multipole source. Acta Physica Sinica, doi: 10.7498/aps.55.267
    [14] Duan Wen-Shan, Hong Xue-Ren. Ion acoustic solitary waves in a weakly relativistic plasma under transverse p erturbations. Acta Physica Sinica, doi: 10.7498/aps.52.1337
    [15] Li Fang-Yu, Shi Dong-Ping, Dai Hong-Xia. Perturbation to the energy of Gaussian beam by a doubly polarized weak gravita tional plane wave in a static magnetic field. Acta Physica Sinica, doi: 10.7498/aps.52.2706
    [16] Zhang Da-Cheng, Wang Lu-Xia, Liu De-Sheng, Han Sheng-Hao, Xie Shi-Jie. Effect of atomic fluctuation on the localized modes in one-dimensional system. Acta Physica Sinica, doi: 10.7498/aps.52.3191
    [17] QU WEI-XING, YU WEI, ZHANG WEN-QI, XU ZHI-ZHAN. THE STATIC MAGNETIC MODE AND THE OSCILLATING ELECTRIC FIELD IN THE INTERACTION OF ELECTRO MAGNETIC FIELD WITH IONIZATION FRONT. Acta Physica Sinica, doi: 10.7498/aps.46.661
    [18] ZHU SHI-TONG, SHEN WEN-DA. GEODESIC MOTION IN THE GLOBALLY REGULAR SPACE-TIME OF A SCHWARZSCHILD BLACK HOLE. Acta Physica Sinica, doi: 10.7498/aps.35.819
    [19] WU YUAN-YAN, ZHANG JIN-LIN. NUMERICAL STUDY OF THE PHYSICAL CHARACTERESTICS IN THE GYROTRON WITH A VARYING MAGNETIC FIELD. Acta Physica Sinica, doi: 10.7498/aps.32.1526
    [20] WO TSANG-SHENG, TAI KWANG-SI, LIU KONG-CHUN, TING YU. AN EXPERIMENTAL STUDY OF PROTON FREE PRECESSION IN A WEAK MAGNETIC FIELD AND ITS APPLICATION TO FIELD WORK. Acta Physica Sinica, doi: 10.7498/aps.21.1175
Metrics
  • Abstract views:  26
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  25 November 2025
  • /

    返回文章
    返回