搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaON/SiO2和HfON/SiO2双隧穿层MONOS存储器存储特性的比较

何美林 徐静平 陈建雄 刘璐

LaON/SiO2和HfON/SiO2双隧穿层MONOS存储器存储特性的比较

何美林, 徐静平, 陈建雄, 刘璐
PDF
导出引用
导出核心图
  • 本文对比研究了LaON/SiO2和HfON/SiO2双隧穿层MONOS存储器的存储特性. 实验结果表明,LaON/SiO2双隧穿层MONOS存储器具有较大的存储窗口,快的编程/擦除速度及好的疲劳和保持特性. 其机理在于LaON较大的介电常数有效提高了编程/擦除过程中载流子的注入效率,较小的O 扩散系数减少了界面陷阱,从而减少了保持期间存储电荷通过陷阱辅助隧穿的泄漏. 而且N的结合在界面附近形成了强的La-N,Hf-N 和O-N键,可有效降低编程/擦除循环应力对界面的损伤,使器件具有好的疲劳特性. 此外,研究了退火温度对存储特性的影响,结果表明800 ℃退火样品的存储特性比700 ℃退火的好,这是因为800 ℃时NO退火可在LaON(HfON)中引入更多的N,且能更好释放应力,使介质中缺陷减少.
    • 基金项目: 国家自然科学基金(批准号:60976091)和中央高校基本科研业务费(批准号:HUST:2013QN037)资助的课题.
    [1]

    Fang S H, Cheng X L, Huang Y, Gu H H 2007 Acta Phys. Sin. 56 6634 (in Chinese) [房少华, 程秀兰, 黄晔, 顾怀怀 2007 物理学报 56 6634]

    [2]

    Li L L, Yu Z G, Xiao Z Q, Zhou X J 2011 Acta Phys. Sin. 60 098502 (in Chinese) [李蕾蕾, 于宗光, 肖志强, 周昕杰 2011 物理学报 60 098502]

    [3]

    Lue H T, Wang S Y, Lai E K, Hsieh K Y, Liu R, Lu C Y 2007 International Symposium on VLSI Technology, Systems and Applications Hsinchu, April 23–25, 2007 p1

    [4]

    Liu L, Xu J P, Ji F, Chen J X, Lai P T 2012 Appl. Phys. Lett. 101 033501

    [5]

    Zhao Y J, Wang X N, Shang H L, White M H 2006 Solid-State Electronics 50 1667

    [6]

    Tang Z J, Li R, Yin J 2013 Chin. Phys. B 22 067702

    [7]

    Govoreanu B, Blomme P, Rosmeulen M, Van Houdt J, De Meyer K 2003 IEEE Electron Device Letters 24 99

    [8]

    Gilmer D C, Geol N, Verma S, Park H, Park C, Bersuker G, Kirsch P D, Saraswat K C, Jammy R 2009 International Symposium on VLSI Technology, Systems and Applications Hsinchu, April 27–29, 2009 p156

    [9]

    Lee D J, Yim S S, Kim K S, Kim S H, Kim K B 2010 Journal of Applied Physics 107 013707

    [10]

    Kwang S S, Choi S J, Choi J Y, Jang E J, Kim B K, Park S J, Cha D G, Song I Y, Park J B, Park Y S, Choi S H 2006 Appl. Phys. Lett. 89 083109

    [11]

    Robertson J 2004 The European Physical Journal Applied Physics 28 265

    [12]

    Wilk G D, Wallace R M, Anthony J M 2001 Journal of Applied Physics 89 5243

    [13]

    Iwai H, Ohmi S, Akama S, Ohshima C, Kikuchi A, Kashiwagi I, Taguchi J, Yamamoto H, Tonotani J, Kim Y, Ueda I, Kuriyama A, Yoshihara Yices 2002 International Electron Devices Meeting San Francisco, December 8–11, 2006 p625

    [14]

    Eom D, No S Y, Hwang C S, Kim H J 2006 ECS Transaction 1 219

    [15]

    Wang S J, Chai J W, Dong Y F, Feng Y P, Sutanto N, Pan J S, Huan A C H 2006 Appl. Phys. Lett. 88 192103

    [16]

    Sen B 2009 Ph. D. Dissertation (Hong Kong: City University of Hong Kong)

    [17]

    Xu Q X, Xu, G B, Wang W W, Chen D P, Shi S L, Han Z S, Ye T C 2008 Appl. Phys. Lett. 93 252903

    [18]

    Padovani A, Arreghini A, Vandelli L, Larcher L, Pavan P, Van Houdt J 2011 IEEE Transactions on Electron Devices 58 3147

    [19]

    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908

    [20]

    Maria J P, Wickaksana D, Parrette J, Kingon A I 2002 Journal of Materials Research 17 1571

    [21]

    Guarini T, Bevan M, Ripley M, Ganguly U, Date L, Graoui H, Swenberg J 2010 18th IEEE International Conference on Advanced Thermal Processing of Semiconductors (RTP) Gainesville, Sept.28–Oct.1, 2010 p166

    [22]

    Lai H Y, Chang-Liao K S, Wang T K, Wang P K, Cheng C L 2006 Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24 1683

    [23]

    Aozasa H, Fujiwara I, Nomoto K, Komatsu H, Koyama K, Kobayashi T, Oda T 2007 Journal of The Electrochemical Society 154 H798

    [24]

    Lai S K, Lee J, Dham V K 1983 International Electron Devices Meeting 29 190

    [25]

    Chin A, Lin S H, Yang H J, Tsai C Y, Yeh F S, Liao C C, Li M F 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits Suzhou, July 6–10, 2009 p641

    [26]

    Zhou H, Wang X, Nguyen B Y, Rai R, Prabhu L, Jiang J, Kaushik V, Scheaffer J, Zavala M, Duda E, Liu R, Zonner S, Hradsky B, Fejes P, Theodore D, Edwards G, Gregory R, Wang R, Hak Y, Yu J, Lu H B, Chen Z H, Lu X B, Liu Z G 2003 IEEE Conference on Electron Devices and Solid-State Circuits Hong Kong, December 16–18, 2003 p357

    [27]

    Liu M, Fang Q, He G, Zhu L Q, Zhang L D 2006 Applied Surface Science 252 8673

    [28]

    Jur J S 2007 Ph. D. Dissertation (Raleigh NC: North Carolina State University)

  • [1]

    Fang S H, Cheng X L, Huang Y, Gu H H 2007 Acta Phys. Sin. 56 6634 (in Chinese) [房少华, 程秀兰, 黄晔, 顾怀怀 2007 物理学报 56 6634]

    [2]

    Li L L, Yu Z G, Xiao Z Q, Zhou X J 2011 Acta Phys. Sin. 60 098502 (in Chinese) [李蕾蕾, 于宗光, 肖志强, 周昕杰 2011 物理学报 60 098502]

    [3]

    Lue H T, Wang S Y, Lai E K, Hsieh K Y, Liu R, Lu C Y 2007 International Symposium on VLSI Technology, Systems and Applications Hsinchu, April 23–25, 2007 p1

    [4]

    Liu L, Xu J P, Ji F, Chen J X, Lai P T 2012 Appl. Phys. Lett. 101 033501

    [5]

    Zhao Y J, Wang X N, Shang H L, White M H 2006 Solid-State Electronics 50 1667

    [6]

    Tang Z J, Li R, Yin J 2013 Chin. Phys. B 22 067702

    [7]

    Govoreanu B, Blomme P, Rosmeulen M, Van Houdt J, De Meyer K 2003 IEEE Electron Device Letters 24 99

    [8]

    Gilmer D C, Geol N, Verma S, Park H, Park C, Bersuker G, Kirsch P D, Saraswat K C, Jammy R 2009 International Symposium on VLSI Technology, Systems and Applications Hsinchu, April 27–29, 2009 p156

    [9]

    Lee D J, Yim S S, Kim K S, Kim S H, Kim K B 2010 Journal of Applied Physics 107 013707

    [10]

    Kwang S S, Choi S J, Choi J Y, Jang E J, Kim B K, Park S J, Cha D G, Song I Y, Park J B, Park Y S, Choi S H 2006 Appl. Phys. Lett. 89 083109

    [11]

    Robertson J 2004 The European Physical Journal Applied Physics 28 265

    [12]

    Wilk G D, Wallace R M, Anthony J M 2001 Journal of Applied Physics 89 5243

    [13]

    Iwai H, Ohmi S, Akama S, Ohshima C, Kikuchi A, Kashiwagi I, Taguchi J, Yamamoto H, Tonotani J, Kim Y, Ueda I, Kuriyama A, Yoshihara Yices 2002 International Electron Devices Meeting San Francisco, December 8–11, 2006 p625

    [14]

    Eom D, No S Y, Hwang C S, Kim H J 2006 ECS Transaction 1 219

    [15]

    Wang S J, Chai J W, Dong Y F, Feng Y P, Sutanto N, Pan J S, Huan A C H 2006 Appl. Phys. Lett. 88 192103

    [16]

    Sen B 2009 Ph. D. Dissertation (Hong Kong: City University of Hong Kong)

    [17]

    Xu Q X, Xu, G B, Wang W W, Chen D P, Shi S L, Han Z S, Ye T C 2008 Appl. Phys. Lett. 93 252903

    [18]

    Padovani A, Arreghini A, Vandelli L, Larcher L, Pavan P, Van Houdt J 2011 IEEE Transactions on Electron Devices 58 3147

    [19]

    Chen W, Liu W J, Zhang M, Ding S J, Zhang D W, Li M F 2007 Appl. Phys. Lett. 91 022908

    [20]

    Maria J P, Wickaksana D, Parrette J, Kingon A I 2002 Journal of Materials Research 17 1571

    [21]

    Guarini T, Bevan M, Ripley M, Ganguly U, Date L, Graoui H, Swenberg J 2010 18th IEEE International Conference on Advanced Thermal Processing of Semiconductors (RTP) Gainesville, Sept.28–Oct.1, 2010 p166

    [22]

    Lai H Y, Chang-Liao K S, Wang T K, Wang P K, Cheng C L 2006 Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24 1683

    [23]

    Aozasa H, Fujiwara I, Nomoto K, Komatsu H, Koyama K, Kobayashi T, Oda T 2007 Journal of The Electrochemical Society 154 H798

    [24]

    Lai S K, Lee J, Dham V K 1983 International Electron Devices Meeting 29 190

    [25]

    Chin A, Lin S H, Yang H J, Tsai C Y, Yeh F S, Liao C C, Li M F 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits Suzhou, July 6–10, 2009 p641

    [26]

    Zhou H, Wang X, Nguyen B Y, Rai R, Prabhu L, Jiang J, Kaushik V, Scheaffer J, Zavala M, Duda E, Liu R, Zonner S, Hradsky B, Fejes P, Theodore D, Edwards G, Gregory R, Wang R, Hak Y, Yu J, Lu H B, Chen Z H, Lu X B, Liu Z G 2003 IEEE Conference on Electron Devices and Solid-State Circuits Hong Kong, December 16–18, 2003 p357

    [27]

    Liu M, Fang Q, He G, Zhu L Q, Zhang L D 2006 Applied Surface Science 252 8673

    [28]

    Jur J S 2007 Ph. D. Dissertation (Raleigh NC: North Carolina State University)

  • [1] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究. 物理学报, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [2] 曹辉, 赵清. 双势阱中冷原子的关联隧穿. 物理学报, 2010, 59(4): 2187-2192. doi: 10.7498/aps.59.2187
    [3] 梁九卿, 费宏明, 周飞, 杨毅彪. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [4] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间. 物理学报, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [5] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻. 物理学报, 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [6] 唐康凇, 项元江, 文双春. 含单负介质层受阻全内反射结构的光子隧穿现象研究. 物理学报, 2006, 55(6): 2714-2719. doi: 10.7498/aps.55.2714
    [7] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿. 物理学报, 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [8] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿. 物理学报, 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [9] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究. 物理学报, 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [10] 黄锐, 宋捷, 郭艳青, 王祥, 陈坤基, 李伟. a-SiNx/nc-Si/a-SiNx双势垒结构中的电荷隧穿和存储效应. 物理学报, 2011, 60(2): 027301. doi: 10.7498/aps.60.027301
    [11] 王茂祥, 孙承休, 史晓春, 俞建华. 双势垒结构Cu-Al2O3-MgF2-Au隧道结中的电子共振隧穿与发光特性研究. 物理学报, 1999, 48(2): 326-331. doi: 10.7498/aps.48.326
    [12] 吴广智, 王强, 周沧涛, 傅立斌. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象. 物理学报, 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [13] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [14] 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣, 唐 霖. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [15] 吴双清, 蒋青权. Kerr解的新形式及其隧穿辐射. 物理学报, 2006, 55(9): 4428-4432. doi: 10.7498/aps.55.4428
    [16] 赵 峥, 张靖仪. 静质量不为零的粒子的量子隧穿辐射. 物理学报, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [17] 林恺, 杨树政. Vaidya-Bonner黑洞的费米子隧穿. 物理学报, 2009, 58(2): 744-748. doi: 10.7498/aps.58.744
    [18] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射. 物理学报, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [19] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [20] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷. 物理学报, 2011, 60(9): 090506. doi: 10.7498/aps.60.090506
  • 引用本文:
    Citation:
计量
  • 文章访问数:  700
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-19
  • 修回日期:  2013-08-25
  • 刊出日期:  2013-12-05

LaON/SiO2和HfON/SiO2双隧穿层MONOS存储器存储特性的比较

  • 1. 华中科技大学, 光学与电子信息学院, 武汉 430074
    基金项目: 

    国家自然科学基金(批准号:60976091)和中央高校基本科研业务费(批准号:HUST:2013QN037)资助的课题.

摘要: 本文对比研究了LaON/SiO2和HfON/SiO2双隧穿层MONOS存储器的存储特性. 实验结果表明,LaON/SiO2双隧穿层MONOS存储器具有较大的存储窗口,快的编程/擦除速度及好的疲劳和保持特性. 其机理在于LaON较大的介电常数有效提高了编程/擦除过程中载流子的注入效率,较小的O 扩散系数减少了界面陷阱,从而减少了保持期间存储电荷通过陷阱辅助隧穿的泄漏. 而且N的结合在界面附近形成了强的La-N,Hf-N 和O-N键,可有效降低编程/擦除循环应力对界面的损伤,使器件具有好的疲劳特性. 此外,研究了退火温度对存储特性的影响,结果表明800 ℃退火样品的存储特性比700 ℃退火的好,这是因为800 ℃时NO退火可在LaON(HfON)中引入更多的N,且能更好释放应力,使介质中缺陷减少.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回