搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非聚焦电子束照射SiO2薄膜带电效应

李维勤 张海波 鲁君

非聚焦电子束照射SiO2薄膜带电效应

李维勤, 张海波, 鲁君
PDF
导出引用
导出核心图
  • 采用考虑电子散射、俘获、输运和自洽场的三维数值模型, 模拟了低能非聚焦电子束照射接地SiO2薄膜的带电效应. 结果表明, 由于电子的迁移和扩散, 电子会渡越散射区域产生负空间电荷分布. 空间电荷呈现在散射区域内为正, 区域外为负的交替分布特性. 对于薄膜负带电, 电子会输运至导电衬底形成泄漏电流, 其暂态过程随泄漏电流的增加趋于平衡. 而正带电暂态过程随返回二次电子的增多而趋于平衡. 在平衡态时, 负带电表面电位随薄膜厚度、陷阱密度的增大而降低, 随电子迁移率、薄膜介电常数的增大而升高;而正带电表面电位受它们影响较小.
    • 基金项目: 国家自然科学基金(批准号: 60476018), 陕西省教育厅科研计划项目(批准号: 11JK0926)和西安理工大学博士科研启动基金(批准号: 105-211005)资助的课题.
    [1]

    Cazaux J 2005 J. Microsc. 217 16

    [2]
    [3]

    Reimer L 1993 Image Formation in Low Voltage Scanning Electron Microscopy (Bellingham: SPIE Optical Engineering Press) p71

    [4]
    [5]

    Abe H, Babin S, Borisov S, Hamaguchi A, Kadowaki M, Miyano Y, Yamazaki Y 2009 J. Vac. Sci. Technol. B 27 1039

    [6]
    [7]

    Zhao S L, Bertrand P 2011 Chin. Phys. B 20 037901

    [8]

    Joo J, Chow B Y, Jacobson J M 2006 Nano Lett 6 2021

    [9]
    [10]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 物理学报 55 148]

    [11]
    [12]

    Song H Y, Zhang Y L, Wei Q, Kong X D 2005 High Energy Phys. Nucl. Phys. 29 1219 (in Chinese) [宋会英, 张玉林, 魏强, 孔祥东 2005 高能物理与核物理 29 1219]

    [13]
    [14]
    [15]

    Ren L M Chen B Q, Tan Z Y 2002 Acta Phys. Sin. 51 512 (in Chinese) [任黎明, 陈宝钦, 谭震宇 2002 物理学报 51 512]

    [16]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682

    [17]
    [18]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]

    [19]
    [20]
    [21]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)[黄建国, 韩建伟 2010 物理学报 59 2907]

    [22]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [23]
    [24]
    [25]

    Sessler G M 1998 Electrets (New York: Springer-Verlag)

    [26]
    [27]

    Zhang X Q, Sessler G M, Xia Z F, Zhang Y W 2001 Acta Phys. Sin. 50 293 (in Chinese) [张晓青, Sessler G M, 夏钟福, 张冶文 2001 物理学报 50 293]

    [28]
    [29]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [30]

    Ura K 1998 J. Electron Microsc. 47 143

    [31]
    [32]

    Nakasugi T, Ando A, Sugihara K, Miyoshi M, Okumura K 2001 Proc. SPIE 4343 334

    [33]
    [34]
    [35]

    Koike T, Ikeda T, Miyoshi M, Okumura K, Ura K 2002 Jpn. J. Appl. Phys. 41 915

    [36]
    [37]

    Zhang H B, Feng R J, Ura K 2004 Sci. Prog. 87 249

    [38]
    [39]

    Zhu S Q, Rau E I, Yang F H 2003 Semicond. Sci. Technol. 18 361

    [40]
    [41]

    Cornet N, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110

    [42]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostatics 67 695

    [43]
    [44]

    Rau E I, Fakhfakh S, Andrianov M V, Evstafeva E N, Jbara O, Rondot S, Mouze D 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 719

    [45]
    [46]
    [47]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [48]

    Ohya K, Inai K, Kuwada H, Hayashi T, Saito M 2008 Surf. Coat. Technol. 202 5310

    [49]
    [50]
    [51]

    Bai M, Pease R F W 2004 J. Vac. Sci. Technol. B 22 2907

    [52]
    [53]

    Taylor D M, Mehdi Q H 1979 J. Phys. D 12 2253

    [54]
    [55]

    Li W Q, Zhang H B 2008 Acta Phys. Sin. 57 3219 (in Chinese) [李维勤, 张海波 2008 物理学报 57 3219]

    [56]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482

    [57]
    [58]
    [59]

    Li W Q, Zhang H B 2010 Micron 41 416

    [60]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [61]
    [62]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 306

    [63]
    [64]
    [65]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487

    [66]
    [67]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [68]

    Ying M H, Thong J T L 1994 Meas. Sci. Technol. 5 1089

    [69]
    [70]

    Cazaux J 2004 J. Appl. Phys. 95 731

    [71]
    [72]

    Zhang H B, Feng R J, Ura K 2003 Chin. Phys. Lett. 20 2011

    [73]
    [74]

    Touzin M, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [75]
    [76]
    [77]

    Renoud R, Mady F, Attard C, Bigarr J, Ganachaud J P 2004 Phys. Status Solidi A 201 2119

    [78]

    Ning T H 1976 J. Appl. Phys. 47 3203

    [79]
    [80]
    [81]

    Cazaux J 1996 X-Ray Spectrom. 25 265

    [82]

    Renoud R, Attard C, Ganachaud J-P, Bartholome S, Dubus A 1998 J. Phys.: Condens. Matter 10 5821.

    [83]
    [84]
    [85]

    Bai M Pease R F W Meisburger W D 2003 J. Vac. Sci. Technol. B 21 106

  • [1]

    Cazaux J 2005 J. Microsc. 217 16

    [2]
    [3]

    Reimer L 1993 Image Formation in Low Voltage Scanning Electron Microscopy (Bellingham: SPIE Optical Engineering Press) p71

    [4]
    [5]

    Abe H, Babin S, Borisov S, Hamaguchi A, Kadowaki M, Miyano Y, Yamazaki Y 2009 J. Vac. Sci. Technol. B 27 1039

    [6]
    [7]

    Zhao S L, Bertrand P 2011 Chin. Phys. B 20 037901

    [8]

    Joo J, Chow B Y, Jacobson J M 2006 Nano Lett 6 2021

    [9]
    [10]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 物理学报 55 148]

    [11]
    [12]

    Song H Y, Zhang Y L, Wei Q, Kong X D 2005 High Energy Phys. Nucl. Phys. 29 1219 (in Chinese) [宋会英, 张玉林, 魏强, 孔祥东 2005 高能物理与核物理 29 1219]

    [13]
    [14]
    [15]

    Ren L M Chen B Q, Tan Z Y 2002 Acta Phys. Sin. 51 512 (in Chinese) [任黎明, 陈宝钦, 谭震宇 2002 物理学报 51 512]

    [16]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielectr. Electr. Insul. 16 682

    [17]
    [18]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]

    [19]
    [20]
    [21]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)[黄建国, 韩建伟 2010 物理学报 59 2907]

    [22]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [23]
    [24]
    [25]

    Sessler G M 1998 Electrets (New York: Springer-Verlag)

    [26]
    [27]

    Zhang X Q, Sessler G M, Xia Z F, Zhang Y W 2001 Acta Phys. Sin. 50 293 (in Chinese) [张晓青, Sessler G M, 夏钟福, 张冶文 2001 物理学报 50 293]

    [28]
    [29]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [30]

    Ura K 1998 J. Electron Microsc. 47 143

    [31]
    [32]

    Nakasugi T, Ando A, Sugihara K, Miyoshi M, Okumura K 2001 Proc. SPIE 4343 334

    [33]
    [34]
    [35]

    Koike T, Ikeda T, Miyoshi M, Okumura K, Ura K 2002 Jpn. J. Appl. Phys. 41 915

    [36]
    [37]

    Zhang H B, Feng R J, Ura K 2004 Sci. Prog. 87 249

    [38]
    [39]

    Zhu S Q, Rau E I, Yang F H 2003 Semicond. Sci. Technol. 18 361

    [40]
    [41]

    Cornet N, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110

    [42]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostatics 67 695

    [43]
    [44]

    Rau E I, Fakhfakh S, Andrianov M V, Evstafeva E N, Jbara O, Rondot S, Mouze D 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 719

    [45]
    [46]
    [47]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [48]

    Ohya K, Inai K, Kuwada H, Hayashi T, Saito M 2008 Surf. Coat. Technol. 202 5310

    [49]
    [50]
    [51]

    Bai M, Pease R F W 2004 J. Vac. Sci. Technol. B 22 2907

    [52]
    [53]

    Taylor D M, Mehdi Q H 1979 J. Phys. D 12 2253

    [54]
    [55]

    Li W Q, Zhang H B 2008 Acta Phys. Sin. 57 3219 (in Chinese) [李维勤, 张海波 2008 物理学报 57 3219]

    [56]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482

    [57]
    [58]
    [59]

    Li W Q, Zhang H B 2010 Micron 41 416

    [60]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [61]
    [62]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 306

    [63]
    [64]
    [65]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487

    [66]
    [67]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [68]

    Ying M H, Thong J T L 1994 Meas. Sci. Technol. 5 1089

    [69]
    [70]

    Cazaux J 2004 J. Appl. Phys. 95 731

    [71]
    [72]

    Zhang H B, Feng R J, Ura K 2003 Chin. Phys. Lett. 20 2011

    [73]
    [74]

    Touzin M, Goeuriot D, Guerret-Picourt C, Juv D, Trheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

    [75]
    [76]
    [77]

    Renoud R, Mady F, Attard C, Bigarr J, Ganachaud J P 2004 Phys. Status Solidi A 201 2119

    [78]

    Ning T H 1976 J. Appl. Phys. 47 3203

    [79]
    [80]
    [81]

    Cazaux J 1996 X-Ray Spectrom. 25 265

    [82]

    Renoud R, Attard C, Ganachaud J-P, Bartholome S, Dubus A 1998 J. Phys.: Condens. Matter 10 5821.

    [83]
    [84]
    [85]

    Bai M Pease R F W Meisburger W D 2003 J. Vac. Sci. Technol. B 21 106

  • [1] 李维勤, 张海波. 低能电子束照射接地绝缘薄膜的负带电过程. 物理学报, 2008, 57(5): 3219-3229. doi: 10.7498/aps.57.3219
    [2] 霍志胜, 蒲红斌, 李维勤. 高能透射电子束照射聚合物薄膜的带电效应. 物理学报, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [3] 林家齐, 雷清泉, 肖春, 张冶文, 郑飞虎, 安振连. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [4] Urisu Tsuneo, 王长顺, 潘 煦. 同步辐射光激励的二氧化硅薄膜刻蚀研究. 物理学报, 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [5] 安振连, 刘晨霞, 陈暄, 郑飞虎, 张冶文. 表层氟化聚乙烯中的空间电荷. 物理学报, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [6] 赵敏, 安振连, 姚俊兰, 解晨, 夏钟福. 孔洞聚丙烯驻极体膜中空间电荷与孔洞击穿电荷的俘获特性. 物理学报, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [7] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [8] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷. 物理学报, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [9] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [10] 陈暄, 安振连, 刘晨霞, 张冶文, 郑飞虎. 表层氟化温度对聚乙烯中空间电荷积累的影响. 物理学报, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [11] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理. 物理学报, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [12] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [13] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [14] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [15] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200553
    [16] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究. 物理学报, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [17] 左应红, 王建国, 朱金辉, 牛胜利, 范如玉. 爆炸电子发射初期阴极表面电场的研究. 物理学报, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [18] 吴长顺, 郑飞虎, 张冶文, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [19] 梁铭辉, 郑飞虎, 安振连, 张冶文. 基于Monte Carlo的热脉冲法数据分析. 物理学报, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [20] 何敏华, 张端明, 高义华. 镓填充二氧化硅纳米管的电子束诱导的反常膨胀(已撤稿). 物理学报, 2012, 61(18): 186102. doi: 10.7498/aps.61.186102
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1980
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-25
  • 修回日期:  2011-05-12
  • 刊出日期:  2012-01-05

非聚焦电子束照射SiO2薄膜带电效应

  • 1. 西安理工大学自动化与信息工程学院, 西安 710048;
  • 2. 西安交通大学电子科学与技术系电子物理与器件教育部重点实验室, 西安 710049
    基金项目: 

    国家自然科学基金(批准号: 60476018), 陕西省教育厅科研计划项目(批准号: 11JK0926)和西安理工大学博士科研启动基金(批准号: 105-211005)资助的课题.

摘要: 采用考虑电子散射、俘获、输运和自洽场的三维数值模型, 模拟了低能非聚焦电子束照射接地SiO2薄膜的带电效应. 结果表明, 由于电子的迁移和扩散, 电子会渡越散射区域产生负空间电荷分布. 空间电荷呈现在散射区域内为正, 区域外为负的交替分布特性. 对于薄膜负带电, 电子会输运至导电衬底形成泄漏电流, 其暂态过程随泄漏电流的增加趋于平衡. 而正带电暂态过程随返回二次电子的增多而趋于平衡. 在平衡态时, 负带电表面电位随薄膜厚度、陷阱密度的增大而降低, 随电子迁移率、薄膜介电常数的增大而升高;而正带电表面电位受它们影响较小.

English Abstract

参考文献 (85)

目录

    /

    返回文章
    返回