搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合结构的气体电子倍增器增益模拟和实验研究

张余炼 祁辉荣 胡碧涛 温志文 王海云 欧阳群 陈元柏 张建

基于复合结构的气体电子倍增器增益模拟和实验研究

张余炼, 祁辉荣, 胡碧涛, 温志文, 王海云, 欧阳群, 陈元柏, 张建
PDF
导出引用
导出核心图
  • 气体电子倍增器(GEM)作为高性能的微结构气体探测器在高能物理相关领域内得到了广泛的研究和应用.其中增益是GEM探测器基本性能研究中的一个重要参数,该值的精确测量至关重要.增益的测量一般采用电流测量或者能谱测量方法,但均存在精度较低或者过程繁琐的问题,且无法精确测量低增益值.针对GEM探测器增益的精确测量,本文提出了一种由GEM探测器与微网结构气体探测器(MM)级联构成的复合结构探测器(GEM-MM).利用GEM-MM结构以相对方法实现GEM增益的精确测量.该方法既可以省去传统方法中复杂的电子学标定过程,同时不需要进行原初电离电子数的估算,保证了增益的精确测量,并且可以实现GEM低增益的测量.基于GEM-MM测量GEM增益的原理,本文首先对GEM-MM电荷输运过程进行了模拟研究,优化了合适的工作电压.比较了三种不同类型和配比工作气体下GEM增益模拟结果,并在Ar/iC4H10(95/5)气体中测量了单层GEM在3-24范围内的有效增益.不同Penning系数下GEM增益的模拟结果表明,Penning系数为0.32时GEM增益的模拟结果与实验测量结果符合得很好.由此可以确定一个大气压下的Ar/iC4H10(95/5)气体中,Penning系数为0.32±0.01.
      通信作者: 祁辉荣, qihr@ihep.ac.cn;hubt@lzu.edu.cn ; 胡碧涛, qihr@ihep.ac.cn;hubt@lzu.edu.cn
    • 基金项目: 国家重点研发计划“大科学装置前沿研究”重点专项(批准号:2016YFA0400400)、国家自然科学基金(批准号:11675197)和中国科学院高能物理研究所创新基金资助的课题.
    [1]

    Sauli F 1997 Nucl. Instrum. Methods A 386 531

    [2]

    Sauli F 2016 Nucl. Instrum. Methods A 805 2

    [3]

    Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004 Nucl. Instrum. Methods A 535 314

    [4]

    Bressan A, de Oliveira R, Gandi A, Labbé J C 1999 Nucl. Instrum. Methods A 425 254

    [5]

    Ketzer B 2013 Nucl. Instrum. Methods A 732 237

    [6]

    Benlloch J M, Dokoutchaeva V, Malakhov N, Menzione A, Munar A 1998 Nucl. Instrum. Methods A 419 410

    [7]

    Tsionou D 2017 Nucl. Instrum. Methods A 845 309

    [8]

    Abbaneo D, Abbas M, Abbrescia M, et al. 2017 Nucl. Instrum. Methods A 845 298

    [9]

    Lippmann C 2016 Nucl. Instrum. Methods A 824 543

    [10]

    Giomataris Y, Rebourgeard Ph, Robert J, Charpak G 1996 Nucl. Instrum. Methods A 376 29

    [11]

    Blum W, Rolandi L 1993 Particle Detection with Drift Chambers (Berlin: Springer) p125

    [12]

    Snäll J 2016 M. S. Thesis (Lund: Lund University)

    [13]

    Binks W 1954 Acta Radiologica 41 85

    [14]

    Benlloch J, Bressan A, Buttner C, Capeans M, Gruwe M, Hoch M, Labbe J C, Placci A, Ropelewski L, Sauli F, Sharma A, Veenhof R 1998 IEEE Trans. Nucl. Sci. 45 234

    [15]

    Bellazzini R, Brez A, Gariano G, Latronico L, Lumb N, Spandre G, Massai M M, Raffo R, Spezziga M A 1998 Nucl. Instrum. Methods A 419 429

    [16]

    Charpak G, Derré J, Giomataris Y, Rebourgeard P 2002 Nucl. Instrum. Methods A 478 26

    [17]

    Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum. Methods A 515 261

    [18]

    Schindler H, Veenhof R Garfield++, https://garfieldppwebcernch/garfieldpp/ [2016-10-04]

    [19]

    Geuzaine C, Remacle J F 2009 Int. J. Numer. Methods Engineer. 79 1309

    [20]

    CSC-IT Center for Science LTD, Elmer, https://wwwcscfi/web/elmer/elmer [2016-10-04]

    [21]

    Sahin Ö, Tapan I, Özmutlu E N, Veenhof R 2010 JINST 5 05002

    [22]

    Zerguerras T, Genolini B, Lepeltier V, Peyré J, Pouthas J, Rosier P 2009 Nucl. Instrum. Methods A 608 397

    [23]

    Mir J A, Maia J M, Conceição A S, et al. 2008 IEEE Trans. Nucl. Sci. 55 2334

    [24]

    Sahin Ö, Kowalski T Z, Veenhof R 2014 Nucl. Instrum. Methods A 768 104

    [25]

    Xie Y G, Chen C, Wang M, L J G, Meng X C, Wang F, Gu S D, Guo Y N 2003 Nuclear Detector and Data Acquisition (Beijing: Science Press) p628 (in Chinese) [谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王峰, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第628 页]

  • [1]

    Sauli F 1997 Nucl. Instrum. Methods A 386 531

    [2]

    Sauli F 2016 Nucl. Instrum. Methods A 805 2

    [3]

    Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004 Nucl. Instrum. Methods A 535 314

    [4]

    Bressan A, de Oliveira R, Gandi A, Labbé J C 1999 Nucl. Instrum. Methods A 425 254

    [5]

    Ketzer B 2013 Nucl. Instrum. Methods A 732 237

    [6]

    Benlloch J M, Dokoutchaeva V, Malakhov N, Menzione A, Munar A 1998 Nucl. Instrum. Methods A 419 410

    [7]

    Tsionou D 2017 Nucl. Instrum. Methods A 845 309

    [8]

    Abbaneo D, Abbas M, Abbrescia M, et al. 2017 Nucl. Instrum. Methods A 845 298

    [9]

    Lippmann C 2016 Nucl. Instrum. Methods A 824 543

    [10]

    Giomataris Y, Rebourgeard Ph, Robert J, Charpak G 1996 Nucl. Instrum. Methods A 376 29

    [11]

    Blum W, Rolandi L 1993 Particle Detection with Drift Chambers (Berlin: Springer) p125

    [12]

    Snäll J 2016 M. S. Thesis (Lund: Lund University)

    [13]

    Binks W 1954 Acta Radiologica 41 85

    [14]

    Benlloch J, Bressan A, Buttner C, Capeans M, Gruwe M, Hoch M, Labbe J C, Placci A, Ropelewski L, Sauli F, Sharma A, Veenhof R 1998 IEEE Trans. Nucl. Sci. 45 234

    [15]

    Bellazzini R, Brez A, Gariano G, Latronico L, Lumb N, Spandre G, Massai M M, Raffo R, Spezziga M A 1998 Nucl. Instrum. Methods A 419 429

    [16]

    Charpak G, Derré J, Giomataris Y, Rebourgeard P 2002 Nucl. Instrum. Methods A 478 26

    [17]

    Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum. Methods A 515 261

    [18]

    Schindler H, Veenhof R Garfield++, https://garfieldppwebcernch/garfieldpp/ [2016-10-04]

    [19]

    Geuzaine C, Remacle J F 2009 Int. J. Numer. Methods Engineer. 79 1309

    [20]

    CSC-IT Center for Science LTD, Elmer, https://wwwcscfi/web/elmer/elmer [2016-10-04]

    [21]

    Sahin Ö, Tapan I, Özmutlu E N, Veenhof R 2010 JINST 5 05002

    [22]

    Zerguerras T, Genolini B, Lepeltier V, Peyré J, Pouthas J, Rosier P 2009 Nucl. Instrum. Methods A 608 397

    [23]

    Mir J A, Maia J M, Conceição A S, et al. 2008 IEEE Trans. Nucl. Sci. 55 2334

    [24]

    Sahin Ö, Kowalski T Z, Veenhof R 2014 Nucl. Instrum. Methods A 768 104

    [25]

    Xie Y G, Chen C, Wang M, L J G, Meng X C, Wang F, Gu S D, Guo Y N 2003 Nuclear Detector and Data Acquisition (Beijing: Science Press) p628 (in Chinese) [谢一冈, 陈昌, 王曼, 吕军光, 孟祥承, 王峰, 顾树棣, 过雅南 2003 粒子探测器与数据获取 (北京: 科学出版社) 第628 页]

  • [1] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [2] 董静, 吕新宇, 刘贲, 刘荣光, 马骁妍, 王岚, 陈元柏, 欧阳群, 谢一冈. 基于读出条读出的二维位置灵敏气体电子倍增器的研制. 物理学报, 2010, 59(9): 6029-6035. doi: 10.7498/aps.59.6029
    [3] 鞠旭东, 董明义, 周传兴, 董静, 赵豫斌, 章红宇, 祁辉荣, 欧阳群. 基于阻性阳极读出方法的气体电子倍增器二维成像性能. 物理学报, 2017, 66(7): 072902. doi: 10.7498/aps.66.072902
    [4] 杨贺润, 胡碧涛, 段利敏, 徐瑚珊, 李春艳, 李祖玉, 张小东. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [5] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [6] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [7] 张帆, 李林, 马晓辉, 李占国, 隋庆学, 高欣, 曲轶, 薄报学, 刘国军. InGaAs/GaAs应变量子阱激光器线宽展宽因子的理论研究. 物理学报, 2012, 61(5): 054209. doi: 10.7498/aps.61.054209
    [8] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路. 基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法. 物理学报, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [9] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [10] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [11] 胡小鹏, 祝世宁, 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [12] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [14] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [15] 马 宏, 陈四海, 金锦炎, 易新建, 朱光喜. 1.55μm AlGaInAs-InP偏振无关半导体光放大器及其温度特性研究. 物理学报, 2004, 53(6): 1868-1872. doi: 10.7498/aps.53.1868
    [16] 徐跃民, 陈 诚, 赵国伟. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [17] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 高斯变迹布拉格光纤光栅中的调制不稳定性. 物理学报, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [18] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [19] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线. 物理学报, 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [20] 徐权, 谢康, 冉英华, 杨华军, 黄金. 卡塞格伦光学天线偏轴及性能分析. 物理学报, 2009, 58(2): 946-951. doi: 10.7498/aps.58.946
  • 引用本文:
    Citation:
计量
  • 文章访问数:  345
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-16
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-07-20

基于复合结构的气体电子倍增器增益模拟和实验研究

  • 1. 兰州大学核科学与技术学院, 兰州 730000;
  • 2. 核探测与核电子学国家重点实验室, 北京 100049;
  • 3. 中国科学院高能物理研究所, 北京 100049;
  • 4. 中国科学院大学, 北京 100049
  • 通信作者: 祁辉荣, qihr@ihep.ac.cn;hubt@lzu.edu.cn ; 胡碧涛, qihr@ihep.ac.cn;hubt@lzu.edu.cn
    基金项目: 

    国家重点研发计划“大科学装置前沿研究”重点专项(批准号:2016YFA0400400)、国家自然科学基金(批准号:11675197)和中国科学院高能物理研究所创新基金资助的课题.

摘要: 气体电子倍增器(GEM)作为高性能的微结构气体探测器在高能物理相关领域内得到了广泛的研究和应用.其中增益是GEM探测器基本性能研究中的一个重要参数,该值的精确测量至关重要.增益的测量一般采用电流测量或者能谱测量方法,但均存在精度较低或者过程繁琐的问题,且无法精确测量低增益值.针对GEM探测器增益的精确测量,本文提出了一种由GEM探测器与微网结构气体探测器(MM)级联构成的复合结构探测器(GEM-MM).利用GEM-MM结构以相对方法实现GEM增益的精确测量.该方法既可以省去传统方法中复杂的电子学标定过程,同时不需要进行原初电离电子数的估算,保证了增益的精确测量,并且可以实现GEM低增益的测量.基于GEM-MM测量GEM增益的原理,本文首先对GEM-MM电荷输运过程进行了模拟研究,优化了合适的工作电压.比较了三种不同类型和配比工作气体下GEM增益模拟结果,并在Ar/iC4H10(95/5)气体中测量了单层GEM在3-24范围内的有效增益.不同Penning系数下GEM增益的模拟结果表明,Penning系数为0.32时GEM增益的模拟结果与实验测量结果符合得很好.由此可以确定一个大气压下的Ar/iC4H10(95/5)气体中,Penning系数为0.32±0.01.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回