搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非对称吸声器的发动机声学超表面声衬

白宇 张振方 杨海滨 蔡力 郁殿龙

引用本文:
Citation:

基于非对称吸声器的发动机声学超表面声衬

白宇, 张振方, 杨海滨, 蔡力, 郁殿龙

Metasurface acoustic liner of engine based on asymmetric absorber

Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long
PDF
HTML
导出引用
  • 为了解决发动机低频噪声问题, 基于双端口非对称吸声器原理, 设计了一种尺寸渐变的吸声超表面, 用于发动机声衬降噪设计. 首先, 建立了非对称共振吸声器的理论分析模型和仿真分析模型, 揭示了降噪机理, 并分析了其降噪效果的影响因素. 然后基于非对称共振吸声器设计了一种声学超表面声衬, 用全模型理论计算、等效阻抗理论计算和COMSOL有限元仿真三种方法深入分析了声衬的降噪效果, 并用全模型理论计算和等效阻抗理论计算方法考虑了流速对降噪效果的影响, 然后对此结构进行了参数优化. 研究结果表明, 所设计的基于非对称吸声器的声学超表面声衬在厚度仅为2.5 cm (仅为252 Hz对应波长的1/54)的情况下, 可实现252—692 Hz的频带范围内3 dB以上的降噪效果, 为发动机降噪设计提供了一种新的设计思路.
    In order to solve the problem of low frequency noise of engine, based on the principle of dual port asymmetric sound absorber, a kind of gradually changing size sound absorbing metasurface is designed to reduce the noise of engine acoustic liner. Firstly, the theoretical analysis model and simulation analysis model of the asymmetric resonance sound absorber are established, the noise reduction mechanism is revealed, and the influencing factors of the noise reduction effect are analyzed. Then an acoustic metasurface acoustic liner is designed based on the asymmetric resonance sound absorber. The noise reduction effect of the acoustic liner is analyzed in depth by using three methods: full model theoretical calculation, equivalent impedance theoretical calculation and COMSOL finite element simulation. Then, the parameters of this structure are optimized, and the influence of flow velocity on the noise reduction effect is considered by using the full model theoretical calculation and equivalent impedance theoretical calculation. The research results show that the acoustic metasurface acoustic liner designed based on asymmetric sound absorber can achieve noise reduction effect of more than 3 dB in a frequency band range from 252 to 692 Hz when the thickness is only 2.5 cm (only 1/54 of the corresponding wavelength of 252 Hz), which provides a new idea for designing engine noise reduction.
      通信作者: 郁殿龙, dianlongyu@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号: 11872371)、国家自然科学基金重大项目(批准号: 11991032)和湖南省科技创新计划(批准号: 2020RC4022)资助的课题.
      Corresponding author: Yu Dian-Long, dianlongyu@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11872371), the Major Program of the National Natural Science Foundation of China (Grant No. 11991032), and the Hunan Provincial Science and Technology Innovation Program, China (Grant No. 2020RC4022).
    [1]

    Kaltenbach M, Maschke C, Heb F, Niemann H, Führ M 2016 Int. J. Environ. Prot. 6 15

    [2]

    Čavka I, Čokorilo O, Vasov L 2016 Energy Build. 115 63Google Scholar

    [3]

    乔渭阳, 许开富, 武兆伟, 黄文超, 秦浩明 2008 航空学报 29 534Google Scholar

    Qiao W Y, Xu K F, Wu Z W, Huang W C, Qin H M 2008 Acta Aeronaut. Astronaut. Sin. 29 534Google Scholar

    [4]

    陈俊, 周驯黄, 徐珺, 刘常春, 许尧 2019 推进技术 40 1498

    Chen J, Zhou X H, Xu J, Liu C C, Xu Y 2019 Promotion Technol. 40 1498

    [5]

    陈超, 闫照华, 李晓东 2018 航空动力学报 33 3041

    Chen C, Yan Z H, Li X D 2018 J. Aerospace Power 33 3041

    [6]

    霍施宇, 杨嘉丰, 邓云华, 燕群 2022 航空学报 43 519

    Huo S Y, Yang J F, Deng Y H, Yan Q 2022 Acta Aeronaut. Astronaut. Sin. 43 519

    [7]

    Zhao D, Ji C, Li J W, Ang L 2018 Appl. Acoust. 141 281Google Scholar

    [8]

    Jha N, Das D, Tripathi A, Hota R 2019 Appl. Acoust. 150 179Google Scholar

    [9]

    Dannemann M, Kucher M, Kunze E, Modler N, Knobloch K, Enghardt L, Sarradj E, Höschler K 2018 Appl. Sci. 8 1923Google Scholar

    [10]

    Knobloch K, Enghardt L, Bake F 2018 24th AIAA/CEAS Aeroacoustics Conference Atlanta, Georgia, June 25–29, 2018 p4102

    [11]

    Simon F 2018 J. Sound and Vibr. 421 1Google Scholar

    [12]

    Sandu C, Humbert T, Auregan Y, Deaconu M, Totu A, Radu A, Serbescu H, Tipa T 2022 IOP Conference Series: Materials Science and Engineering 1226 012049Google Scholar

    [13]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [14]

    黄思博, 周志凌, 李东庭, 刘拓, 王旭, 祝捷, 李勇 2020 科学通报 65 373Google Scholar

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhu J, Li Y 2020 Sc. Bull. 65 373Google Scholar

    [15]

    Huang S B, Zhou E M, Huang Z L, Lei P F, Zhou Z L, Li Y 2021 Appl. Phys. Lett. 118 063504Google Scholar

    [16]

    Ding H, Wang N Y, Qiu S, Huang S B, Zhou Z L, Zhou C C, Jia B, Li Y 2022 Int. J. Mech. Sci. 232 107601Google Scholar

    [17]

    Cheng B Z, Gao N S, Huang Y K, Hou H 2022 J. Vib. Control 28 410Google Scholar

    [18]

    Yang X C, Yang F, Shen X M, Wang E S, Zhang X N, Shen C, Peng W Q 2022 Materials 15 5938Google Scholar

    [19]

    Wang E S, Yang F, Shen X M, Duan H Q, Zhang X N, Yin Q, Peng W Q, Yang X C, Yang L 2022 Materials 15 3417Google Scholar

    [20]

    Beck B S, Schiller N H, Jones M G 2015 Appl. Acoust. 93 15Google Scholar

    [21]

    Guo J W, Fang Y, Jiang Z Y, Zhang X 2021 J. Acoust. Soc. Am. 149 70Google Scholar

    [22]

    Oh T S, Jeon W 2022 Appl. Phys. Lett. 120 044103Google Scholar

    [23]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Sci. Rep. 7 1Google Scholar

    [24]

    Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar

    [25]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [26]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [27]

    Seo S H, Kim Y H, Kim K J 2018 Appl. Acoust. 138 188Google Scholar

    [28]

    Guess A 1975 J. Sound Vib. 40 119Google Scholar

    [29]

    Kooi J, Sarin S 1981 7th Aeroacoustics Conference Palo Alto, California, October 5–7, 1981 p1998

  • 图 1  非对称吸声器结构示意图

    Fig. 1.  Structural diagram of asymmetric sound absorber.

    图 2  声波正向入射 (a)和反向入射 (b)不同情况下, 吸声器的吸声系数A和反射系数R及在770 Hz处的声压变化

    Fig. 2.  The sound absorption coefficient A and reflection coefficient R of the sound absorber and the change of sound pressure at 770 Hz under different conditions of normal (a) and reverse (b) incidence of sound waves.

    图 3  吸声系数和频率的关系 (a) HR2的内插管长度变化; (b) HR1与内插管长度变化的HR2耦合; (c) 声波反向入射时, HR1与内插管长度变化的HR2耦合; (d) HR1和HR2之间间距变化; (e) 两组吸声器

    Fig. 3.  The relationship between sound absorption coefficient and frequency: (a) The length change of HR2 endotracheal tube; (b) HR1is coupled with HR2 with varying length of endotracheal tube; (c) HR1 is coupled to HR2 with the change of the length of the endotracheal tube when the acoustic wave is incident in the reverse direction; (d) change in spacing between HR1 and HR2; (e) two sets of sound absorbers.

    图 4  (a) 全尺寸建模; (b) 三维等效阻抗建模

    Fig. 4.  (a) Full scale modeling; (b) three dimensional equivalent impedance modeling.

    图 5  用理论、仿真和等效阻抗计算得出的(a)吸声系数和(b)传递损失

    Fig. 5.  (a) Sound absorption coefficient and (b) transmission loss calculated by substituting theory, simulation and equivalent impedance.

    图 6  (a) 二维对称等效阻抗建模; 400 Hz频率处(b)无声衬等效阻抗时和(c) 有声衬等效阻抗时声压变化

    Fig. 6.  (a) Two dimensional symmetrical equivalent impedance modeling. Sound pressure change at 400 Hz frequency (b) when there is no acoustic liner equivalent impedance and (c) when there is acoustic liner equivalent impedance.

    图 7  参数优化后理论计算得到的(a)吸声系数和(b)传递损失

    Fig. 7.  (a) Sound absorption coefficient and (b) transmission loss calculated theoretically after parameter optimization.

    图 8  马赫数为0, 0.1, 0.2时, 声衬的(a)吸声系数和(b)传递损失

    Fig. 8.  When Mach number is 0, 0.1, 0.2, (a) sound absorption coefficient and (b) transmission loss of sound liner.

    表 1  共振器的尺寸

    Table 1.  Size of resonator.

    l/mma/mml/mma/mml/mma/mm
    11.122124.4272310.831
    21.522135.5262411.233
    31.124146.0282513.834
    41.524157.1262614.236
    51.924167.6282713.834
    62.324178.5282814.236
    71.828189.0282917.040
    82.328198.5283019.740
    92.828209.0283117.040
    103.1282110.8313219.740
    114.4252211.233332342
    342342
    下载: 导出CSV

    表 2  每一个非对称吸声器对应的耦合频率

    Table 2.  Coupling frequency corresponding to each pair of asymmetric sound absorbers.

    非对称
    共振
    吸声器
    fcr非对称
    共振
    吸声器
    fcr非对称
    共振
    吸声器
    fcr
    1770749013300
    2740845014300
    3690940015250
    464010400 16250
    55901135017210
    653012350
    下载: 导出CSV

    表 3  共振器的尺寸

    Table 3.  Size of resonator.

    l/mma/mml/mma/mml/mma/mm
    12.42212627231431
    22.522137.5262413.533
    32.724147282514.834
    42.824159262614.536
    53.524168.5282717.534
    63.624179.728281736
    73.45281810.2282917.140
    83.65281911.5283017.640
    94.4528201228312040
    104.6528211231322140
    116.6252211.533332341
    342342
    下载: 导出CSV
  • [1]

    Kaltenbach M, Maschke C, Heb F, Niemann H, Führ M 2016 Int. J. Environ. Prot. 6 15

    [2]

    Čavka I, Čokorilo O, Vasov L 2016 Energy Build. 115 63Google Scholar

    [3]

    乔渭阳, 许开富, 武兆伟, 黄文超, 秦浩明 2008 航空学报 29 534Google Scholar

    Qiao W Y, Xu K F, Wu Z W, Huang W C, Qin H M 2008 Acta Aeronaut. Astronaut. Sin. 29 534Google Scholar

    [4]

    陈俊, 周驯黄, 徐珺, 刘常春, 许尧 2019 推进技术 40 1498

    Chen J, Zhou X H, Xu J, Liu C C, Xu Y 2019 Promotion Technol. 40 1498

    [5]

    陈超, 闫照华, 李晓东 2018 航空动力学报 33 3041

    Chen C, Yan Z H, Li X D 2018 J. Aerospace Power 33 3041

    [6]

    霍施宇, 杨嘉丰, 邓云华, 燕群 2022 航空学报 43 519

    Huo S Y, Yang J F, Deng Y H, Yan Q 2022 Acta Aeronaut. Astronaut. Sin. 43 519

    [7]

    Zhao D, Ji C, Li J W, Ang L 2018 Appl. Acoust. 141 281Google Scholar

    [8]

    Jha N, Das D, Tripathi A, Hota R 2019 Appl. Acoust. 150 179Google Scholar

    [9]

    Dannemann M, Kucher M, Kunze E, Modler N, Knobloch K, Enghardt L, Sarradj E, Höschler K 2018 Appl. Sci. 8 1923Google Scholar

    [10]

    Knobloch K, Enghardt L, Bake F 2018 24th AIAA/CEAS Aeroacoustics Conference Atlanta, Georgia, June 25–29, 2018 p4102

    [11]

    Simon F 2018 J. Sound and Vibr. 421 1Google Scholar

    [12]

    Sandu C, Humbert T, Auregan Y, Deaconu M, Totu A, Radu A, Serbescu H, Tipa T 2022 IOP Conference Series: Materials Science and Engineering 1226 012049Google Scholar

    [13]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [14]

    黄思博, 周志凌, 李东庭, 刘拓, 王旭, 祝捷, 李勇 2020 科学通报 65 373Google Scholar

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhu J, Li Y 2020 Sc. Bull. 65 373Google Scholar

    [15]

    Huang S B, Zhou E M, Huang Z L, Lei P F, Zhou Z L, Li Y 2021 Appl. Phys. Lett. 118 063504Google Scholar

    [16]

    Ding H, Wang N Y, Qiu S, Huang S B, Zhou Z L, Zhou C C, Jia B, Li Y 2022 Int. J. Mech. Sci. 232 107601Google Scholar

    [17]

    Cheng B Z, Gao N S, Huang Y K, Hou H 2022 J. Vib. Control 28 410Google Scholar

    [18]

    Yang X C, Yang F, Shen X M, Wang E S, Zhang X N, Shen C, Peng W Q 2022 Materials 15 5938Google Scholar

    [19]

    Wang E S, Yang F, Shen X M, Duan H Q, Zhang X N, Yin Q, Peng W Q, Yang X C, Yang L 2022 Materials 15 3417Google Scholar

    [20]

    Beck B S, Schiller N H, Jones M G 2015 Appl. Acoust. 93 15Google Scholar

    [21]

    Guo J W, Fang Y, Jiang Z Y, Zhang X 2021 J. Acoust. Soc. Am. 149 70Google Scholar

    [22]

    Oh T S, Jeon W 2022 Appl. Phys. Lett. 120 044103Google Scholar

    [23]

    Jiménez N, Romero-García V, Pagneux V, Groby J P 2017 Sci. Rep. 7 1Google Scholar

    [24]

    Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar

    [25]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [26]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [27]

    Seo S H, Kim Y H, Kim K J 2018 Appl. Acoust. 138 188Google Scholar

    [28]

    Guess A 1975 J. Sound Vib. 40 119Google Scholar

    [29]

    Kooi J, Sarin S 1981 7th Aeroacoustics Conference Palo Alto, California, October 5–7, 1981 p1998

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [4] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [5] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [10] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [11] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展. 物理学报, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [12] 吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞. 非对称光束干涉制备二维微纳光子结构研究. 物理学报, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [13] 邱天硕, 王甲富, 李勇峰, 王军, 闫明宝, 屈绍波. 基于超表面的无磁性材料环行器. 物理学报, 2016, 65(17): 174101. doi: 10.7498/aps.65.174101
    [14] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [15] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [16] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
计量
  • 文章访问数:  2640
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-11-30
  • 上网日期:  2022-12-29
  • 刊出日期:  2023-03-05

/

返回文章
返回