搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2ZnOB2O6单晶偏振拉曼光谱

张季 张德明 王迪 张庆礼 孙敦陆 殷绍唐

引用本文:
Citation:

Bi2ZnOB2O6单晶偏振拉曼光谱

张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐

Polarized Raman spectra of single crystal Bi2ZnOB2O6

Zhang Ji, Zhang De-Ming, Wang Di, Zhang Qing-Li, Sun Dun-Lu, Yin Shao-Tang
PDF
导出引用
  • 本文通过分析不同几何配置下的偏振拉曼光谱对非线性光学晶体的晶格振动模式进行了研究. 首先根据因子群分析,将晶体的振动模按晶体对称群的不可约表示进行分类,其次测量了晶体在101600 cm-1范围内,不同几何配置下的偏振拉曼光谱,并在此基础上指认了晶体的晶格振动模式. 300 cm-1以下的振动峰,归结为晶体的外振动,来自[BiO6],[ZnO4],[BO4]和[BO3]原子基团的平动和转动;300cm-1以上为晶体的内振动,主要与Bi-O,和Zn-O键振动有关. 晶体拉曼光谱中最高振动频率达到1407 cm-1,被指认为[BO3]三角形中B-O键的伸缩振动,体现了[BO3]基团中高的电子非局域化程度.
    Polarized Raman spectra of single crystal Bi2ZnOB2O6 have been recorded in the spectral range 101600 cm-1 at room temperature. Factor group analysis was used to obtain the normal modes of vibration of the crystal. The Raman peaks under 300 cm-1 are assigned to external modes, which are related to the rotational and transitional movement of the [BiO6], [ZnO4], [BO4] and [BO3] groups. Compared with the vibrational spectra of the compounds referred, the satisfactory assignment of most of the high-energy modes to vibrations of Bi-O, B-O and Zn-O bonds can be achieved. In particular, the Raman high-frequency peak located at 1407 cm-1 is attributed to the B-O vibration in the [BO3] triangle.
    • 基金项目: 国家自然科学基金(批准号:50932005,51102239,90922003,51172236,91122021)和安徽省自然科学基金(批准号:KJ2013B106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50932005, 51102239, 90922003, 51172236, 91122021) and the Natural Science Foundation of Anhui Provence, China (Grant No. KJ2013B106).
    [1]

    Barbier J, Penin N, Cranswick L M 2005 Chem. Mater. 17 3130

    [2]

    Li F, Pan S L, Hou X L, Yao J 2009 Cryst. Growth Des. 9 4091

    [3]

    Li F, Hou X L, Pan S L, Wang X A 2009 Chem. Mater. 21 2846

    [4]

    Li F, Fu P Z, Wu Y C, Zhang J X 2009 J. Cryst. Growth 311 3476

    [5]

    Li F, Pan S, Hou X, Zhou Z 2010 J. Cryst. Growth 312 2383

    [6]

    Zhang Q H, Wang J, Ni H, Wang L 2012 Rare Metals 31 35

    [7]

    Reshak H, Auluck S, Majchrowski A, Kityk I V 2009 Jpn. J. Appl. Phys. Part 1 48 011601

    [8]

    Majchrowski A, Gondek E, Ozga K, Kityk I V, Reshak A H,Kasiewicz T 2009 J. Alloys Compd. 485 29

    [9]

    Weglowski S, Klosowicz S J, Majchrowski A, Tkaczyk S, Reshak A H, Pisarek J, Kityk I V 2010 Mater. Lett. 64 1176

    [10]

    Majchrowski S, Ebothe J, Ozga K, Kityk I V, Reshak A H, Luksiewicz T, Brik M G 2010 J. Phys. D: Appl. Phys. 43 015103

    [11]

    Majchrowski S, Ebothe J, Sanetra J, Ozga K, Kityk I V, Reshak A H, Łukasiewicz T 2010 J. Mater. Sci.: Mater. Electron. 21 726

    [12]

    Merad B I, Reshak A H, Ouahrani T, Bentalha Z 2013 J. Appl. Phys. 113 083505

    [13]

    Chen C T 1979 Sci. Sin. 22 759

    [14]

    Zhang J, Wang D, Zhang D M, Zhang Q L, Wan S M, Sun D L, Yin S T 2013 Acta Phys. Sin. 62 037802 (in Chinese) [张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐 2013 物理学报 62 037802]

    [15]

    Wang D, Wan S M, Zhang Q L, Sun D L, Gu G X, Yin S T, Zhang G C, You J L, Wang Y Y 2011 Chin. Phys. B 10 108101

    [16]

    Zhang G Y 2001 Lattice vibrational spectroscopy (Higher Education Press) p200 (in Chinese) [张光寅 2001 晶格振动光谱学 (高等教育出版社) 第200页]

    [17]

    Baia L, Stefan R, Kiefer W, Simon S 2005 J. Raman Spectrosc. 36 262

    [18]

    Inoue T, Honmaa T, Dimitrov V, Komatsu T 2010 J. Solid State Chem. 183 3078

    [19]

    Domoratski K V, Pastukhov V I, Kudzin A Y, Ya L Sadovskaya, Rizak V M, Stefanovich V A 2001 Phys. Solid State 42 1443

    [20]

    Krogh-Moe J 1962 Acra Crystallogr. 15 190

    [21]

    Kamitsos E I, Karakassides M A, Chryssikos G D 1989 Phys. Chem. Glasses 30 229

    [22]

    Heyns A M, Range K J, Wildenauer M 1990 Spectrochimica Acta A 46 1621

    [23]

    Jiang Y J, Wang Y, Zeng K Z, Liu Y L 1996 Acta Phys. Sin. 45 885 (in Chinese) [蒋毅坚, 王越, 曾令扯, 刘玉龙 1996 物理学报 45 885]

    [24]

    Paul G L, Taylor W 1956 J. Phys. 25 1184

    [25]

    Steele W C, Decius J C 1956 J. Chem. Phys. 25 1184

    [26]

    Kaminskiia A A, Beckerb P, Bohatyb L, Uedac K, Takaichic K, Hanuzad J, Maczkad M, Eichlerf H J, Gad M A 2002 Optics Communications 206 179

    [27]

    Shang Q Y, Hudson B S, Huang C 1991 Spectrachim Acta. A 47 291

    [28]

    Damen T C, Pqrtq S P S, Tell B 1966 Phys. Rev. 142 570

  • [1]

    Barbier J, Penin N, Cranswick L M 2005 Chem. Mater. 17 3130

    [2]

    Li F, Pan S L, Hou X L, Yao J 2009 Cryst. Growth Des. 9 4091

    [3]

    Li F, Hou X L, Pan S L, Wang X A 2009 Chem. Mater. 21 2846

    [4]

    Li F, Fu P Z, Wu Y C, Zhang J X 2009 J. Cryst. Growth 311 3476

    [5]

    Li F, Pan S, Hou X, Zhou Z 2010 J. Cryst. Growth 312 2383

    [6]

    Zhang Q H, Wang J, Ni H, Wang L 2012 Rare Metals 31 35

    [7]

    Reshak H, Auluck S, Majchrowski A, Kityk I V 2009 Jpn. J. Appl. Phys. Part 1 48 011601

    [8]

    Majchrowski A, Gondek E, Ozga K, Kityk I V, Reshak A H,Kasiewicz T 2009 J. Alloys Compd. 485 29

    [9]

    Weglowski S, Klosowicz S J, Majchrowski A, Tkaczyk S, Reshak A H, Pisarek J, Kityk I V 2010 Mater. Lett. 64 1176

    [10]

    Majchrowski S, Ebothe J, Ozga K, Kityk I V, Reshak A H, Luksiewicz T, Brik M G 2010 J. Phys. D: Appl. Phys. 43 015103

    [11]

    Majchrowski S, Ebothe J, Sanetra J, Ozga K, Kityk I V, Reshak A H, Łukasiewicz T 2010 J. Mater. Sci.: Mater. Electron. 21 726

    [12]

    Merad B I, Reshak A H, Ouahrani T, Bentalha Z 2013 J. Appl. Phys. 113 083505

    [13]

    Chen C T 1979 Sci. Sin. 22 759

    [14]

    Zhang J, Wang D, Zhang D M, Zhang Q L, Wan S M, Sun D L, Yin S T 2013 Acta Phys. Sin. 62 037802 (in Chinese) [张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐 2013 物理学报 62 037802]

    [15]

    Wang D, Wan S M, Zhang Q L, Sun D L, Gu G X, Yin S T, Zhang G C, You J L, Wang Y Y 2011 Chin. Phys. B 10 108101

    [16]

    Zhang G Y 2001 Lattice vibrational spectroscopy (Higher Education Press) p200 (in Chinese) [张光寅 2001 晶格振动光谱学 (高等教育出版社) 第200页]

    [17]

    Baia L, Stefan R, Kiefer W, Simon S 2005 J. Raman Spectrosc. 36 262

    [18]

    Inoue T, Honmaa T, Dimitrov V, Komatsu T 2010 J. Solid State Chem. 183 3078

    [19]

    Domoratski K V, Pastukhov V I, Kudzin A Y, Ya L Sadovskaya, Rizak V M, Stefanovich V A 2001 Phys. Solid State 42 1443

    [20]

    Krogh-Moe J 1962 Acra Crystallogr. 15 190

    [21]

    Kamitsos E I, Karakassides M A, Chryssikos G D 1989 Phys. Chem. Glasses 30 229

    [22]

    Heyns A M, Range K J, Wildenauer M 1990 Spectrochimica Acta A 46 1621

    [23]

    Jiang Y J, Wang Y, Zeng K Z, Liu Y L 1996 Acta Phys. Sin. 45 885 (in Chinese) [蒋毅坚, 王越, 曾令扯, 刘玉龙 1996 物理学报 45 885]

    [24]

    Paul G L, Taylor W 1956 J. Phys. 25 1184

    [25]

    Steele W C, Decius J C 1956 J. Chem. Phys. 25 1184

    [26]

    Kaminskiia A A, Beckerb P, Bohatyb L, Uedac K, Takaichic K, Hanuzad J, Maczkad M, Eichlerf H J, Gad M A 2002 Optics Communications 206 179

    [27]

    Shang Q Y, Hudson B S, Huang C 1991 Spectrachim Acta. A 47 291

    [28]

    Damen T C, Pqrtq S P S, Tell B 1966 Phys. Rev. 142 570

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [3] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [4] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂. 对甲氧基苯甲腈的单色共振双光子电离光谱. 物理学报, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [5] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [6] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [7] 沈红霞, 吴国祯, 王培杰. 手性分子2, 3-丁二醇的旋光拉曼光谱研究. 物理学报, 2013, 62(5): 053301. doi: 10.7498/aps.62.053301
    [8] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [9] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究. 物理学报, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [10] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [11] 华宝成, 钱建强, 王曦, 姚骏恩. 应用于扫描探针显微镜的石英音叉机械模型研究. 物理学报, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [12] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [13] 张 霞, 万松明, 张庆礼, 殷绍唐, 尤静林, 陈 辉, 王爱华. Bi4Ge3O12晶体及其熔体结构的高温拉曼光谱研究. 物理学报, 2007, 56(2): 1152-1155. doi: 10.7498/aps.56.1152
    [14] 曹春芳, 吴惠桢, 斯剑霄, 徐天宁, 陈 静, 沈文忠. 分子束外延PbTe单晶薄膜的反常拉曼光谱研究. 物理学报, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [15] 武煜宇, 邹崇文, 徐彭寿. ZnO中H导致的缺陷态的局域振动模式研究. 物理学报, 2006, 55(10): 5466-5470. doi: 10.7498/aps.55.5466
    [16] 彭永进, 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁手性碳纳米管Γ点E1和E2振动模式. 物理学报, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [17] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [18] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [19] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] 李宏年, 徐亚伯, 李海洋, 何丕模, 鲍世宁. 单层纳米碳管振动模的拉曼光谱研究. 物理学报, 1999, 48(2): 273-278. doi: 10.7498/aps.48.273
计量
  • 文章访问数:  12133
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-19
  • 修回日期:  2013-09-02
  • 刊出日期:  2013-12-05

/

返回文章
返回