搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ZnPc/C60太阳电池的光生电流研究

吴甲奇 李文佳 席曦 孟庆蕾 季静佳 顾晓峰 李果华

引用本文:
Citation:

基于ZnPc/C60太阳电池的光生电流研究

吴甲奇, 李文佳, 席曦, 孟庆蕾, 季静佳, 顾晓峰, 李果华

Investigation on photocurrent of ZnPc/C60 solar cells

Wu Jia-Qi, Li Wen-Jia, Meng Qing-Lei, Ji Jing-Jia, Xi Xi, Gu Xiao-Feng, Li Guo-Hua
PDF
导出引用
  • 本研究采用真空蒸镀法制备了ZnPc(20 nm)/C60(10 nm)电池,推导了该类型电池的光生电流表达式,并讨论了在光强和有效偏压恒定条件下的演变形式,实验结果证明理论分析是正确的.分析发现,小分子电池的短路电流密度随光强基本呈直线关系增长,决定此种关系的主因之一是有效偏压.100 ℃,20 min的最佳退火工艺,将电池的短路电流密度提高了43.8%,将其衰减常数从5.6 h提高到22.2 h.本文认为,接触界面态和串联电阻的减小是电池电流水平提升的主要原因.
    Solar cells with structure of ZnPc (20 nm)/C60 (10 nm) are fabricated by thermal evaporation. The photocurrent density (Jph) expressed by effective applied voltage (V0-Va) and light intensity (I) is derived from an analytical method, and it is shown that the results from the model are in good agreement with experimental results. The short-circuit current density (JSC) exhibits a nearly linear dependence on light intensity, which is partially determined by effective applied voltage. Thermal annealing treatment under an optimal condition of 100 ℃ and 20 min, improves JSC by 43.8%, lengthening its attenuation constant from 5.6h to 22.2 h, which is attributed to the improvement on interfacial morphology and the decrease of series resistance due to better contact of the layers.
    • 基金项目: 教育部留学回国人员科研启动基金(批准号:教外司留[2008]890)资助的课题.
    [1]

    Kerp H R, Donker H, Koehorst R B M, Schaafsma T J, Faassen E E 1998 Chemical Physics Letters 298 302

    [2]

    Senthilarasu S, Velumani S, Sathyamoorthy R, Subbarayan A, Ascencio J A, Canizal G, Sebastian P J, Chavez J A, Perez R 2003 Appl. Phys. A 77 383

    [3]

    Aziz M S 2006 Solid-State Electronics 50 1238

    [4]

    Brousse B, Ratier B, Moliton A 2004 Thin Solid Films 451-452 81

    [5]

    Lessmann R, Hong Z, Scholz S, Maennig B, Riede M K, Leo K 2010 Organic Electronics 11 539

    [6]

    Holger Spanggaard, Krebs F C 2004 Solar Energy Materials & Solar Cells 83 125

    [7]

    Green M A, Emery K, HishikawaY, Warta W 2010 Prog. Photovolt: Res. Appl. 18 144

    [8]

    Kwong C Y, Djurii Ac' A B, Chui P C, Lam L S M, Chan W K 2003 Applied Physics A –Materials Science & Processing 77 555

    [9]

    Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封 伟、高中扩 2008 物理学报 57 2567]

    [10]

    Rostalski J, Meissner D 2000 Solar Energy Materials & Solar Cells 63 37

    [11]

    ˇukauskas V K, Arlauskas A, Pranaitis M, Lessmann R, Riede M, Leo K 2010 Optical Materials

    [12]

    Ren J,Zheng J B, Zhao J L 2007 Acta Phys. Sin. 56 2868 (in Chinese)[任 驹、郑建邦、赵建林 物理学报 2007 56 2868]

    [13]

    You H L, Zhang C F 2009 Chin. Phys. B 18 349

    [14]

    Goodman A M, Rose A 1971 J. Appl. Phys. 42 2823

    [15]

    Baessler H 1993 Phys. Status Solidi.175 15

    [16]

    Koster L J A, Mihailetchi V D, Ramaker R, Xie H X, Blom P W M 2006 Proc. of SPIE 6192 61922

    [17]

    Koster L J A, Mihailetchi V D, Xie H X, Blom P W M 2005 Applied Physics Letters 87 203

    [18]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Physical Review Letters 94 126602

    [19]

    Senthilarasu S, Sathyamoorthy R, Lalitha S, Subbarayan A 2005 Solid-State Electronics 49 813

    [20]

    Geens W, Martens T, Poortmans J, Aernouts T, Manca J, Lutsen L, Heremans P, Borghs S, Mertens R, Vanderzande D 2004 Thin Solid Films 451-452 498

    [21]

    Hein C, Mankel E, Mayer T, Jaegermann W 2010 Solar Energy Materials & Solar Cells 94 662

    [22]

    You H L, Zhang C F 2009 Chin. Phys. B 18 2096

    [23]

    Karak S, Ray S K, Dhar A 2010 Solar Energy Materials & Solar Cells 94 836

    [24]

    Geiser A, Fan B, Benmansour H, Castro F, Heier J, Keller B, Mayerhofer K E, Nüesch F, Hany R 2008 Solar Energy Materials & Solar Cells 92 464

    [25]

    Li X S,Peng Y Q,Yang Q S,Xing H W, Lu F P 2007 Acta Phys. Sin. 56 5441 (in Chinese) [李训栓、彭应全、杨青森、刑宏伟、路飞平 2007 物理学报 56 5441]

    [26]

    Xi X, Li F X, Meng Q L, Ding Y Q, Ji J J, Shi Z R, Li G H 2010 Solar Energy Materials & Solar Cells 94 924

  • [1]

    Kerp H R, Donker H, Koehorst R B M, Schaafsma T J, Faassen E E 1998 Chemical Physics Letters 298 302

    [2]

    Senthilarasu S, Velumani S, Sathyamoorthy R, Subbarayan A, Ascencio J A, Canizal G, Sebastian P J, Chavez J A, Perez R 2003 Appl. Phys. A 77 383

    [3]

    Aziz M S 2006 Solid-State Electronics 50 1238

    [4]

    Brousse B, Ratier B, Moliton A 2004 Thin Solid Films 451-452 81

    [5]

    Lessmann R, Hong Z, Scholz S, Maennig B, Riede M K, Leo K 2010 Organic Electronics 11 539

    [6]

    Holger Spanggaard, Krebs F C 2004 Solar Energy Materials & Solar Cells 83 125

    [7]

    Green M A, Emery K, HishikawaY, Warta W 2010 Prog. Photovolt: Res. Appl. 18 144

    [8]

    Kwong C Y, Djurii Ac' A B, Chui P C, Lam L S M, Chan W K 2003 Applied Physics A –Materials Science & Processing 77 555

    [9]

    Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封 伟、高中扩 2008 物理学报 57 2567]

    [10]

    Rostalski J, Meissner D 2000 Solar Energy Materials & Solar Cells 63 37

    [11]

    ˇukauskas V K, Arlauskas A, Pranaitis M, Lessmann R, Riede M, Leo K 2010 Optical Materials

    [12]

    Ren J,Zheng J B, Zhao J L 2007 Acta Phys. Sin. 56 2868 (in Chinese)[任 驹、郑建邦、赵建林 物理学报 2007 56 2868]

    [13]

    You H L, Zhang C F 2009 Chin. Phys. B 18 349

    [14]

    Goodman A M, Rose A 1971 J. Appl. Phys. 42 2823

    [15]

    Baessler H 1993 Phys. Status Solidi.175 15

    [16]

    Koster L J A, Mihailetchi V D, Ramaker R, Xie H X, Blom P W M 2006 Proc. of SPIE 6192 61922

    [17]

    Koster L J A, Mihailetchi V D, Xie H X, Blom P W M 2005 Applied Physics Letters 87 203

    [18]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Physical Review Letters 94 126602

    [19]

    Senthilarasu S, Sathyamoorthy R, Lalitha S, Subbarayan A 2005 Solid-State Electronics 49 813

    [20]

    Geens W, Martens T, Poortmans J, Aernouts T, Manca J, Lutsen L, Heremans P, Borghs S, Mertens R, Vanderzande D 2004 Thin Solid Films 451-452 498

    [21]

    Hein C, Mankel E, Mayer T, Jaegermann W 2010 Solar Energy Materials & Solar Cells 94 662

    [22]

    You H L, Zhang C F 2009 Chin. Phys. B 18 2096

    [23]

    Karak S, Ray S K, Dhar A 2010 Solar Energy Materials & Solar Cells 94 836

    [24]

    Geiser A, Fan B, Benmansour H, Castro F, Heier J, Keller B, Mayerhofer K E, Nüesch F, Hany R 2008 Solar Energy Materials & Solar Cells 92 464

    [25]

    Li X S,Peng Y Q,Yang Q S,Xing H W, Lu F P 2007 Acta Phys. Sin. 56 5441 (in Chinese) [李训栓、彭应全、杨青森、刑宏伟、路飞平 2007 物理学报 56 5441]

    [26]

    Xi X, Li F X, Meng Q L, Ding Y Q, Ji J J, Shi Z R, Li G H 2010 Solar Energy Materials & Solar Cells 94 924

  • [1] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响. 物理学报, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [2] 蒋勇, 袁晓东, 王海军, 廖威, 刘春明, 向霞, 邱荣, 周强, 高翔, 杨永佳, 郑万国, 祖小涛, 苗心向. 退火对熔石英表面损伤修复点损伤增长的影响. 物理学报, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [3] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, 2015, 64(21): 217402. doi: 10.7498/aps.64.217402
    [4] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [5] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [6] 陈海涛, 徐征, 赵谡玲, 赵玲, 刘志民, 高松, 杨一帆, 刘志方, 申崇渝, 徐叙瑢. PCDTBT作为发光层的有机电致发光器件研究. 物理学报, 2014, 63(16): 167802. doi: 10.7498/aps.63.167802
    [7] 刘伯飞, 白立沙, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅锗电池性能的调控研究. 物理学报, 2013, 62(20): 208801. doi: 10.7498/aps.62.208801
    [8] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性. 物理学报, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [9] 刘昶时, 刘文莉. 由阴、阳极电压及入射光强及频率确定光电流. 物理学报, 2013, 62(2): 028401. doi: 10.7498/aps.62.028401
    [10] 刘建朋, 朱彦旭, 郭伟玲, 闫微微, 吴国庆. ITO退火对GaN基LED电学特性的影响. 物理学报, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [11] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [12] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [13] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [14] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质. 物理学报, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [15] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [16] 周丽宏, 张崇宏, 李炳生, 杨义涛, 宋 银. 注入Ar+的蓝宝石晶体退火前后光致发光谱的分析. 物理学报, 2008, 57(4): 2562-2566. doi: 10.7498/aps.57.2562
    [17] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [18] 吴世亮, 陈叶清, 吴奕初, 王少阶, 温熙宇, 翟同广. AA 2037新型连铸铝合金热轧板退火的正电子湮没研究. 物理学报, 2006, 55(11): 6129-6135. doi: 10.7498/aps.55.6129
    [19] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [20] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响. 物理学报, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
计量
  • 文章访问数:  9352
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-08
  • 修回日期:  2010-09-28
  • 刊出日期:  2011-07-15

/

返回文章
返回