搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米颗粒水基分散液在岩心微通道中的双重减阻机制及其实验验证

王新亮 狄勤丰 张任良 顾春元 丁伟朋 龚玮

引用本文:
Citation:

纳米颗粒水基分散液在岩心微通道中的双重减阻机制及其实验验证

王新亮, 狄勤丰, 张任良, 顾春元, 丁伟朋, 龚玮

Dual drag reduction mechanism of water-based dispersion with hydrophobic nanoparticles in core microchannel and experimental verification

Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Gu Chun-Yuan, Ding Wei-Peng, Gong Wei
PDF
导出引用
  • 提出了纳米颗粒水基分散液的力学-化学双重减阻机制,并通过对比岩心切片吸附纳米颗粒前后以及冲刷前后的表面微结构、润湿性的变化,进行了实验验证. 研究结果表明,经纳米颗粒水基分散液处理之后的岩心切片表面表现为强亲水性, 并且存在一层致密的纳米颗粒吸附层;冲刷之后岩心切片表面的纳米颗粒吸附层依然存在, 但其表面已逐渐转变为强/超疏水性,反映了纳米颗粒吸附层表面的表面活性剂被逐渐清洗干净. 注水初期,主要表现为表面活性剂的化学减阻作用.随着注水过程的进行, 主要体现为以疏水表面的滑移效应为主的力学减阻机制.岩心驱替实验结果表明, 纳米颗粒水基分散液驱替后的岩心的水相渗透率平均提高幅度达84.3%, 减阻效果显著,证实了纳米颗粒水基分散液的力学-化学双重减阻机制.
    Dual drag reduction mechanisms of water-based dispersion with nanoparticle is proposed. A contrastive study is take to verify the mechanism, in which the changes of surface microstructure and wettabilities of the core slices take place before and after treating by dispersion with hydrophobic nanoparticles and scouring by water. The results show that the surface of core slice which is treated by water-based dispersion with hydrophobic nanoparticles has strong hydrophilic property, and a compact nanoparticle adsorption layer forms on it. The nanoparticle adsorption layer still exists after scouring, but the core slice surface is changed into strong/super hydrophobic, reflecting that the surfactants which are adsorbed on the nanoparticles adsorption layer surface are gradually cleaned. The water-based dispersion with hydrophobic nanoparticles are mainly manifested as the chemical surfactant drag reduction effect during initial injection. With the injection continued, the mechanical drag reduction induced by the slip effect of super hydrophobic surface is reflected mainly. Core displacement results show that the water-phase effective permeability could increase about 84.3% on average. The results strongly confirm the dual drag reduction mechanism of the water-based dispersion with hydrophobic nanoparticles.
    • 基金项目: 国家自然科学基金(批准号: 50874071)、国家高技术研究发展计划(批准号: 2008AA06Z201)、 上海市科委重点科技攻关计划(批准号: 071605102)、上海高校创新团队建设项目、 上海市教委科研创新项目(批准号: 11CXY32)和上海领军人才基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50874071), the National High Technology Research and Development Program of China (Grant No. 2008AA06Z201), the Key Program of Science and Technology Commission of Shanghai Municipality, China (Grant No. 071605102), Shanghai Program for Innovative Research Team in Universities, Innovation Program of Shanghai Municipal Education Commission (Grant No. 11CXY32) and Program for Shanghai Outstanding Leader.
    [1]

    Barthlott W, Neinhuis C 1997 Planta. 202 1

    [2]

    Choi C, Ulmanella U, Kim J, Ho C, Kim C 2006 Phys. Fluids 18 087105

    [3]

    Choi C H, Westin K J A, Breuer K S 2003 Phys. Fluids 15 2897

    [4]

    Cottin B, Barrat C J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237

    [5]

    Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker C J 2005 Phys. Fluids 17 051701

    [6]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [7]

    Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C J 2006 Phys. Rev. Lett. 97 44504

    [8]

    Gu C Y, Di Q F, Fang H P 2007 J. Hydrodyn. 19 365

    [9]

    Di Q F, Gu C Y, Shi L Y, Fang H P 2007 Dril. Produc. Technol. 30 91 (in Chinese) [狄勤丰, 顾春元, 施利毅, 方海平 2007 钻采工艺 30 91]

    [10]

    Di Q F, Shen C, Wang Z H, Gu C Y, Shi L Y, Fang H P 2009 Acta Petrolei Sinica 30 125 (in Chinese) [狄勤丰, 沈琛, 王掌洪, 顾春元, 施利毅, 方海平 2009 石油学报 30 125]

    [11]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]

    [12]

    Zhang R L, Di Q F, Wang X L, Gu C Y 2010 J. Hydrodyn. 22 366

    [13]

    Zhang R L, Di Q F, Wang X L, Gu C Y 2011 Chin. J. Comput. Phys. 28 225 (in Chinese) [张任良, 狄勤丰, 王新亮, 顾春元 2011 计算物理 28 225]

    [14]

    Wang X L, Di Q F, Zhang R L, Gu C Y 2010 Adva. Mech. 40 241 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元 2010 力学进展 40 241]

    [15]

    Gu C Y, Di Q F, Shen C, Wang Z H, Shi L Y, Wang X L 2011 Petroleum Exploration and Development 38 84 (in Chinese) [顾春元, 狄勤丰, 沈琛, 王掌洪, 施利毅, 王新亮 2011 石油勘探与开发 38 84]

    [16]

    Wang S R, Li X G, Liu D Z 2010 Surfactant Chemistry (Beijing: Chemical Industry Press) p41 (in Chinese) [王世荣, 李祥高, 刘东志 2010 表面活性剂化学 (北京:化学工业出版社) 第41页]

    [17]

    Li F C, Kawaguchi Y, Yu B, Wei J J, Hishida K 2008 International Journal of Heat and Mass Transfer 51 835

    [18]

    Zhang H X, Wang D Z, Chen H P 2009 Arch. Appl. Mech. 79 773

    [19]

    Voronov R S, Papavassiliou D V 2008 Ind. Eng. Chem. Res. 47 2455

    [20]

    Rothstein J P 2010 Ann. Rev. Fluid Mech. 42 89

    [21]

    Huang D M, Sendner C, Horinek D 2008 Phys. Rev. Lett. 101 226101

    [22]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [23]

    Gong M G, Xu X L, Yang Z 2010 Chin. Phys. B 19 056701

    [24]

    Yang Z, Xu X L, Gong M G 2010 Chin. Phys. B 19 126103

    [25]

    Li D, Di Q F, Li J Y, Qian Y H, Fang H P 2007 Chin. Phys. Lett. 24 1021

    [26]

    Wang X L, Di Q F, Zhang R L, Gu C Y, Wang Z H 2010 Petroleum Drilling Techniques 38 10 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元, 王掌洪 2010 石油钻探技术 38 10]

  • [1]

    Barthlott W, Neinhuis C 1997 Planta. 202 1

    [2]

    Choi C, Ulmanella U, Kim J, Ho C, Kim C 2006 Phys. Fluids 18 087105

    [3]

    Choi C H, Westin K J A, Breuer K S 2003 Phys. Fluids 15 2897

    [4]

    Cottin B, Barrat C J L, Bocquet L, Charlaix E 2003 Nat. Mater. 2 237

    [5]

    Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker C J 2005 Phys. Fluids 17 051701

    [6]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [7]

    Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C J 2006 Phys. Rev. Lett. 97 44504

    [8]

    Gu C Y, Di Q F, Fang H P 2007 J. Hydrodyn. 19 365

    [9]

    Di Q F, Gu C Y, Shi L Y, Fang H P 2007 Dril. Produc. Technol. 30 91 (in Chinese) [狄勤丰, 顾春元, 施利毅, 方海平 2007 钻采工艺 30 91]

    [10]

    Di Q F, Shen C, Wang Z H, Gu C Y, Shi L Y, Fang H P 2009 Acta Petrolei Sinica 30 125 (in Chinese) [狄勤丰, 沈琛, 王掌洪, 顾春元, 施利毅, 方海平 2009 石油学报 30 125]

    [11]

    Gu C Y, Di Q F, Shi L Y, Wu F, Wang W C, Yu Z B 2008 Acta Phys. Sin. 57 3071 (in Chinese) [顾春元, 狄勤丰, 施利毅, 吴非, 王文昌, 余祖斌 2008 物理学报 57 3071]

    [12]

    Zhang R L, Di Q F, Wang X L, Gu C Y 2010 J. Hydrodyn. 22 366

    [13]

    Zhang R L, Di Q F, Wang X L, Gu C Y 2011 Chin. J. Comput. Phys. 28 225 (in Chinese) [张任良, 狄勤丰, 王新亮, 顾春元 2011 计算物理 28 225]

    [14]

    Wang X L, Di Q F, Zhang R L, Gu C Y 2010 Adva. Mech. 40 241 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元 2010 力学进展 40 241]

    [15]

    Gu C Y, Di Q F, Shen C, Wang Z H, Shi L Y, Wang X L 2011 Petroleum Exploration and Development 38 84 (in Chinese) [顾春元, 狄勤丰, 沈琛, 王掌洪, 施利毅, 王新亮 2011 石油勘探与开发 38 84]

    [16]

    Wang S R, Li X G, Liu D Z 2010 Surfactant Chemistry (Beijing: Chemical Industry Press) p41 (in Chinese) [王世荣, 李祥高, 刘东志 2010 表面活性剂化学 (北京:化学工业出版社) 第41页]

    [17]

    Li F C, Kawaguchi Y, Yu B, Wei J J, Hishida K 2008 International Journal of Heat and Mass Transfer 51 835

    [18]

    Zhang H X, Wang D Z, Chen H P 2009 Arch. Appl. Mech. 79 773

    [19]

    Voronov R S, Papavassiliou D V 2008 Ind. Eng. Chem. Res. 47 2455

    [20]

    Rothstein J P 2010 Ann. Rev. Fluid Mech. 42 89

    [21]

    Huang D M, Sendner C, Horinek D 2008 Phys. Rev. Lett. 101 226101

    [22]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [23]

    Gong M G, Xu X L, Yang Z 2010 Chin. Phys. B 19 056701

    [24]

    Yang Z, Xu X L, Gong M G 2010 Chin. Phys. B 19 126103

    [25]

    Li D, Di Q F, Li J Y, Qian Y H, Fang H P 2007 Chin. Phys. Lett. 24 1021

    [26]

    Wang X L, Di Q F, Zhang R L, Gu C Y, Wang Z H 2010 Petroleum Drilling Techniques 38 10 (in Chinese) [王新亮, 狄勤丰, 张任良, 顾春元, 王掌洪 2010 石油钻探技术 38 10]

  • [1] 张鹏, 张彦如, 张福建, 刘珍, 张忠强. 纳米限域Couette流边界气泡减阻机理. 物理学报, 2024, 73(15): 154701. doi: 10.7498/aps.73.20240474
    [2] 包西程, 邢耀文, 张凡凡, 张德轲, 刘秦杉, 杨海昌, 桂夏辉. 基于亚稳态液膜空化的长程疏水力作用机制. 物理学报, 2024, 73(3): 036801. doi: 10.7498/aps.73.20231109
    [3] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究. 物理学报, 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [4] 俞炜, 邓梓龙, 吴苏晨, 于程, 王超. Y型微通道内双重乳液流动破裂机理. 物理学报, 2019, 68(5): 054701. doi: 10.7498/aps.68.20181877
    [5] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [6] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [7] 张威, 胡林, 张兴刚. 双分散颗粒体系在临界堵塞态的结构特征. 物理学报, 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [8] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [9] 王媛, 董瑞新, 闫循领. 嵌入Ag纳米颗粒层的DNA忆阻器. 物理学报, 2015, 64(4): 048402. doi: 10.7498/aps.64.048402
    [10] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [11] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [12] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [13] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [14] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [15] 胡海豹, 鲍路瑶, 黄苏和. 纳米通道内液态微流动密度分布特性数值模拟研究. 物理学报, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [16] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [17] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [18] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征. 物理学报, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [19] 韩涛, 孟凡英, 张松, 汪建强, 程雪梅. 银纳米颗粒减反射特性的理论研究. 物理学报, 2011, 60(2): 027303. doi: 10.7498/aps.60.027303
    [20] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
计量
  • 文章访问数:  6458
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-17
  • 修回日期:  2011-12-26
  • 刊出日期:  2012-07-05

/

返回文章
返回