搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三角波加载下金属铝动态破坏现象的微观模拟

邵建立 王裴 何安民 秦承森 辛建婷 谷渝秋

引用本文:
Citation:

三角波加载下金属铝动态破坏现象的微观模拟

邵建立, 王裴, 何安民, 秦承森, 辛建婷, 谷渝秋

Microscopic simulation on the dynamic failure of metal Al under triangular wave loading

Shao Jian-Li, Wang Pei, He An-Min, Qin Cheng-Sen, Xin Jian-Ting, Gu Yu-Qiu
PDF
导出引用
  • 采用嵌入原子势模型和分子动力学方法, 模拟研究了三角波加载下金属铝动态破坏的微观过程和动力学性质. 根据原子中心对称参数变化给出了样品微结构演化过程, 解读了熔化前后破坏过程的形态差异; 基于Virial定理统计了样品中压力和温度等力学量波形, 分析了熔化前后材料的强度变化. 通过不同碰撞速度的模拟, 讨论了破碎区内物质形态和密度分布的变化, 给出了材料破坏深度的变化规律. 研究还发现, 熔化后材料的动态拉伸强度已显著降低, 而此时由声学近似推算的材料拉伸强度已明显高于内部应力直接计算结果.
    Employing an embedded-atom-method potential and molecular dynamics simulations, we have simulated the microscopic process and dynamical properties of the dynamic failure of metal Al specimens under triangular wave loading. The microstructure evolution of the sample is analyzed using the central symmetry parameter, while the difference of morphology between non molten and molten states is also explained. The pressure profiles were calculated based on the virial theorem, and the results show that the tensile strength of the material is decreased considerably in its molten state. Using the simulation results for different impact velocities, we discuss the variation of morphology and density distribution, from which the change of damage depth in the process from non molten to molten states is obtained. Our simulations also suggest that: the tensile strength of material derived from acoustic approximation is distinctively higher than the peak of internal stress from virial theorem for the melted state.
    • 基金项目: 中国工程物理研究院科学技术发展基金 (批准号: 2009A0101007, 2012B0101013) 资助的课题.
    • Funds: Project Project Supported by the Foundation for Development of Science and Technology of China Academy of Engineering Physics, China (Grant Nos. 2009A0101007, 2012B0101013).
    [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material ejection from shock-loaded free surface of aluminum and lead, Sandia Laboratories SAND76-0542

    [4]

    Asay J R 1978 A model for estimating the effects of surface roughness on mass ejection from shocked materials Sandia Laboratories SAND78-1256

    [5]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [6]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [7]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [8]

    Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D, Buttler W T 2009 AIP Conference Proceedings 1195 1047

    [9]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [10]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [11]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [12]

    De Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506

    [13]

    Lescoute E, De Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

    [14]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [15]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [16]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [17]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [18]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [19]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4778 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4778]

    [20]

    Luo S N, Germann T C, Tonks D L 2010 J. Appl. Phys. 107 056102

    [21]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [22]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [23]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21

    [24]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [25]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [26]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [27]

    Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46

    [28]

    Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [29]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [30]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [31]

    Srinivasan S G, Baskes M I, Wagner G J 2007 J. Appl. Phys. 101 043504

    [32]

    Kanel G I, Fortov V E 1987 Adv. Mech. 10 3

    [33]

    Eliezer S, Gilath I, Bar-Noy T 1990 J. Appl. Phys. 67 715

  • [1]

    Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349

    [2]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [3]

    Asay J R 1976 Material ejection from shock-loaded free surface of aluminum and lead, Sandia Laboratories SAND76-0542

    [4]

    Asay J R 1978 A model for estimating the effects of surface roughness on mass ejection from shocked materials Sandia Laboratories SAND78-1256

    [5]

    Ogorodnikov V A, Ivanov A G, Mikhailov A L, Kryukov N I, Tolochko A P, Golubev V A 1998 Combustion, Explosion and Shock Waves 34 696

    [6]

    Oró D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351

    [7]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [8]

    Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D, Buttler W T 2009 AIP Conference Proceedings 1195 1047

    [9]

    Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [10]

    Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 物理学报 58 1064]

    [11]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [12]

    De Rességuier T, Signor L, Dragon A, Boustie M, Roy G, Llorca F 2007 J. Appl. Phys. 101 013506

    [13]

    Lescoute E, De Rességuier T, Chevalier J M, Loison D, Cuq-Lelandais J P, Boustie M, Breil J, Maire P H, Schurtz G 2010 J. Appl. Phys. 108 093510

    [14]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [15]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [16]

    Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151

    [17]

    Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 物理学报 61 184701]

    [18]

    Ma W, Zhu W J, Chen K G, Jing F Q 2011 Acta Phys. Sin. 60 016107 (in Chinese) [马文, 祝文军, 陈开果, 经福谦 2011 物理学报 60 016107]

    [19]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4778 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4778]

    [20]

    Luo S N, Germann T C, Tonks D L 2010 J. Appl. Phys. 107 056102

    [21]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [22]

    Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45

    [23]

    Mei J, Davenport J W 1992 Phys. Rev. B 46 21

    [24]

    Hoffmann K H, Schreiber M 1996 Computational Physics (Berlin Heidelberg: Springer-Verlag) p268

    [25]

    Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [26]

    Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817

    [27]

    Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46

    [28]

    Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085

    [29]

    Luo S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518

    [30]

    Ashkenazy Y, Averback R S 2005 Appl. Phys. Lett. 86 051907

    [31]

    Srinivasan S G, Baskes M I, Wagner G J 2007 J. Appl. Phys. 101 043504

    [32]

    Kanel G I, Fortov V E 1987 Adv. Mech. 10 3

    [33]

    Eliezer S, Gilath I, Bar-Noy T 1990 J. Appl. Phys. 67 715

  • [1] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [3] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [7] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [8] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [9] 蒋国平, 郝洪, 曾春航, 郝逸飞, 吴如军, 刘纪超. 冲击作用下的摩擦力效应实验研究. 物理学报, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [10] 马文, 陆彦文. 纳米多晶铜中冲击波阵面的分子动力学研究. 物理学报, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [11] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [12] 邵建立, 王裴, 何安民, 秦承森. 冲击诱导金属铝表面微射流现象的微观模拟. 物理学报, 2012, 61(18): 184701. doi: 10.7498/aps.61.184701
    [13] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应. 物理学报, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [14] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [15] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [16] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
计量
  • 文章访问数:  5330
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-01
  • 修回日期:  2012-11-02
  • 刊出日期:  2013-04-05

/

返回文章
返回