搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能电子照射绝缘样品的泄漏电流特性

李维勤 刘丁 张海波

引用本文:
Citation:

高能电子照射绝缘样品的泄漏电流特性

李维勤, 刘丁, 张海波

Leakage current characteristics of the insulating sample under high-energy electron irradiation

Li Wei-Qin, Liu Ding, Zhang Hai-Bo
PDF
导出引用
  • 建立了考虑电子散射、输运、俘获和自洽场的数值计算模型, 研究了高能电子束照射下绝缘厚样品的泄漏电流特性, 并采用一个实验平台测量了泄漏电流. 结果表明: 在电子束持续照射下, 电子总产额会下降; 由于电子在样品内部的输运, 样品近表面呈现微弱的正带电, 在样品内部呈现较强的负带电; 样品内部电子会向下输运形成电子束感生电流, 长时间照射下会形成泄漏电流; 随着照射, 泄漏电流逐渐增大并趋于稳定值; 泄漏电流随样品厚度的增大而减小, 随电子束能量、电子束电流的增大而增大.
    The leakage current characteristics of an insulating sample under high-energy electron beam irradiation are simulated by a numerical model with taking into account the electron scattering, transport, trapping and self-consistent field.The leakage current is measured by using a detection platform. Results show that under the continuous electron beam irradiation, the total electron yield decreases evidently; because of electron transport, the sample near the surface is positively charged weakly and its interior is negatively charged strongly; some electrons are transported downward, forming the electron beam induced current and the leakage current under the long time irradiation. Under the irradiation, the leakage current increases to a stable level gradually. The leakage current decreases with the increase of sample thickness, but it increases with beam energy and current.
    • 基金项目: 国家自然科学基金(批准号:11175140)和陕西省自然科学基金项目(批准号:2013JM8001)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175140), and the Scientific Research Program Funded by Shaanxi Province, China (Grant No. 2013JM8001).
    [1]

    Abe H, Babin S, Borisov S, Hamaguchi A, Kadowaki M, Miyano Y, Yamazaki Y 2009 J. Vac. Sci. Technol. B 27 1039

    [2]

    Joo J, Chow B Y, Jacobson J M 2006 Nano Lett. 6 2021

    [3]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielect. Elect. El. In. 16 682

    [4]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [5]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [6]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielect. El. In. 11 192

    [7]

    O'Shea A, Wallace J, Hummel M Strauss L H, Kidd T E 2013 Micron 52-53 57

    [8]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [9]

    Zhang X, Liu B W, Zhao Y, Li C B, Xia Y 2013 Chin. Phys. B 22 127303

    [10]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [11]

    Cornet N, Goeuriot D 2008 J. Appl. Phys. 103 064110

    [12]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [13]

    Taylor D M, Mehdi Q H 1979 J. Phys. D 12 2253

    [14]

    Li W Q, Zhang H B 2010 Micron 41 416

    [15]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostat. 67 695

    [16]

    Rau E I 2008 Appl. Surf. Sci. 254 2110

    [17]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [18]

    Wang C H, Li W Q, Zhang H B 2014 Acta Electr. Sin. 42 144 (in Chinese) [汪春华, 李维勤, 张海波 2014 电子学报 42 144]

    [19]

    Li W Q, Zhang H B, Lu J 2012 Acta Phys. Sin. 61 027302 (in Chinese) [李维勤, 张海波, 鲁君 2012 物理学报 61 027302]

    [20]

    Joy D C 1995 Monte-Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)

    [21]

    Li Y G, Mao S F, Li H M, Xiao S M, Ding Z J 2008 J. Appl. Phys. 104 064901

    [22]

    Mao S F, Ding Z J 2010 Surf. Interf. Anal. 42 1096

    [23]

    Da B, Mao S F, Zhang G H, Ding Z J 2012 J. Appl. Phys. 112 034310

    [24]

    Desalvot A, Rosa R 1987 J. Phys. D 20 790

    [25]

    Penn D R 1987 Phys. Rev. B 35 482

    [26]

    Dapor M, Calliari L, Filippi M 2008 Surf. Interf. Anal. 40 683

    [27]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

  • [1]

    Abe H, Babin S, Borisov S, Hamaguchi A, Kadowaki M, Miyano Y, Yamazaki Y 2009 J. Vac. Sci. Technol. B 27 1039

    [2]

    Joo J, Chow B Y, Jacobson J M 2006 Nano Lett. 6 2021

    [3]

    Paulmier T, Dirassen B, Payan D, Eesbeek M V 2009 IEEE Trans. Dielect. Elect. El. In. 16 682

    [4]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese) [黄建国, 韩建伟 2010 物理学报 59 2907]

    [5]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [6]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielect. El. In. 11 192

    [7]

    O'Shea A, Wallace J, Hummel M Strauss L H, Kidd T E 2013 Micron 52-53 57

    [8]

    Mizuhara Y, Kato J, Nagatomi T, Takai Y, Inoue M 2002 J. Appl. Phys. 92 6128

    [9]

    Zhang X, Liu B W, Zhao Y, Li C B, Xia Y 2013 Chin. Phys. B 22 127303

    [10]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [11]

    Cornet N, Goeuriot D 2008 J. Appl. Phys. 103 064110

    [12]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [13]

    Taylor D M, Mehdi Q H 1979 J. Phys. D 12 2253

    [14]

    Li W Q, Zhang H B 2010 Micron 41 416

    [15]

    Askri B, Raouadi K, Renoud R, Yangui B 2009 J. Electrostat. 67 695

    [16]

    Rau E I 2008 Appl. Surf. Sci. 254 2110

    [17]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443

    [18]

    Wang C H, Li W Q, Zhang H B 2014 Acta Electr. Sin. 42 144 (in Chinese) [汪春华, 李维勤, 张海波 2014 电子学报 42 144]

    [19]

    Li W Q, Zhang H B, Lu J 2012 Acta Phys. Sin. 61 027302 (in Chinese) [李维勤, 张海波, 鲁君 2012 物理学报 61 027302]

    [20]

    Joy D C 1995 Monte-Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press)

    [21]

    Li Y G, Mao S F, Li H M, Xiao S M, Ding Z J 2008 J. Appl. Phys. 104 064901

    [22]

    Mao S F, Ding Z J 2010 Surf. Interf. Anal. 42 1096

    [23]

    Da B, Mao S F, Zhang G H, Ding Z J 2012 J. Appl. Phys. 112 034310

    [24]

    Desalvot A, Rosa R 1987 J. Phys. D 20 790

    [25]

    Penn D R 1987 Phys. Rev. B 35 482

    [26]

    Dapor M, Calliari L, Filippi M 2008 Surf. Interf. Anal. 40 683

    [27]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110

  • [1] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报, 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [2] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟. 物理学报, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [3] 李维勤, 霍志胜, 蒲红斌. 电介质/半导体结构样品电子束感生电流瞬态特性. 物理学报, 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [4] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型. 物理学报, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [5] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [6] 封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳. 电子辐照电介质样品带电泄放弛豫特性研究. 物理学报, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [7] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [8] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [9] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性. 物理学报, 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [10] 卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃. 偏置条件对SOI NMOS器件总剂量辐照效应的影响 . 物理学报, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [11] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [12] 石玗, 郭朝博, 黄健康, 樊丁. 脉冲电流作用下TIG电弧的数值分析. 物理学报, 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [13] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [14] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [15] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [18] 李维勤, 张海波. 低能电子束照射接地绝缘薄膜的负带电过程. 物理学报, 2008, 57(5): 3219-3229. doi: 10.7498/aps.57.3219
    [19] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  3030
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-04
  • 修回日期:  2014-07-08
  • 刊出日期:  2014-11-05

高能电子照射绝缘样品的泄漏电流特性

  • 1. 西安理工大学自动化与信息工程学院, 西安 710048;
  • 2. 西安交通大学电子科学与技术系, 电子物理与器件教育部重点实验室, 西安 710049
    基金项目: 国家自然科学基金(批准号:11175140)和陕西省自然科学基金项目(批准号:2013JM8001)资助的课题.

摘要: 建立了考虑电子散射、输运、俘获和自洽场的数值计算模型, 研究了高能电子束照射下绝缘厚样品的泄漏电流特性, 并采用一个实验平台测量了泄漏电流. 结果表明: 在电子束持续照射下, 电子总产额会下降; 由于电子在样品内部的输运, 样品近表面呈现微弱的正带电, 在样品内部呈现较强的负带电; 样品内部电子会向下输运形成电子束感生电流, 长时间照射下会形成泄漏电流; 随着照射, 泄漏电流逐渐增大并趋于稳定值; 泄漏电流随样品厚度的增大而减小, 随电子束能量、电子束电流的增大而增大.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回