搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟

夏敏 汪鹏 张晓虎 葛昌纯

引用本文:
Citation:

电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟

夏敏, 汪鹏, 张晓虎, 葛昌纯

Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process

Xia Min, Wang Peng, Zhang Xiao-Hu, Ge Chang-Chun
PDF
导出引用
  • 电极感应熔化气雾化(electrode induction melting gas atomization,EIGA)是一种制备超洁净无夹杂物的先进制粉技术,本文以粉末高温合金的氩气雾化过程为研究示例,对现有用于实际生产的国内某厂家提供的EIGA用非限制式喷嘴进行建模,采用商用计算流体力学软件FLUENT,分布采用欧拉-欧拉VOF (volume of fluid)多相流方法与欧拉-拉格朗日DPM (discrete phase model)离散相方法,对非限制式环缝喷嘴主雾化与二次雾化过程进行了数值模拟.通过对主雾化过程中多相流大涡模拟速度流场,主雾化过程中不同阶段高温熔体云图模拟以及二次雾化过程中TAB (Taylor analogy breakup)模型速度流场及TAB模型粒度分布的模拟研究,实现了对EIGA制粉技术中非限制式喷嘴雾化过程的全过程模拟,并预测了雾化后的粉末粒度分布.在此基础上,采用本文模拟使用的非限制式环缝喷嘴,设定与模拟条件一致(进气压力4 MPa,液流直径约4 mm)的实验条件,制备的粉末大部分颗粒的直径大小在100 μm左右,该实验结果与模拟得到的粉末直径D50=100 μm大小一致,进一步验证了模拟数据的合理性.该方法也适用于非限制式喷嘴里,其他金属或合金的雾化过的模拟研究.
    Nickel-based superalloy is mainly used for fabricating the important high temperature parts including the turbine disk, turbine baffle, compressor disk, and other critical components. Ceramic inclusions in powder metallurgy (PM) superalloy could promote fatigue crack initiation, and thus accelerating the crack propagation under certain conditions. In this case, the ultra-clean nickel-based superalloy powder is critical for PM superalloy components. Generally, there are two well-known methods of fabricating superalloy powders, i.e., argon gas atomization (AA) and plasma rotating electrode process (PREP). Electrode induction melting gas atomization (EIGA) process is a newly developed method of preparing ultra-clean metal powders. The EIGA process is a completely crucible-free melting and atomization process developed by ALD vacuum technologies. In this process, a slowly rotating prealloyed bar is fed into a conical induction coil. The end of the bar is inductively heated and molten alloys falls into an atomizer where the liquid alloy is atomized with a high-pressure inert gas. The EIGA prepared powders possess the advantages of AA (more fine powders) and PREP (ultra-clean powders) processes. Generally, there are two key issues in EIGA process, and the free-fall gas atomizer design is one of the critical issues for the powder yield and quality. Free-fall gas atomizers are some of the first two fluid atomizer designs to be used for molten metal atomization. In a simple open (unconfined stream) design a melt stream falls from a tundish exit via gravity into the convergence of focused atomization gas jets where it is disintegrated. The gas-melt interaction is complex, and it is difficult to characterize the interaction process directly. To have a good understanding of the atomisation technology, the physical break-up process instead of correlating the gas dynamics with droplet fragmentation indirectly must be able to be examined. And it will be desirable, if we input the atomization parameters, we can obtain the particles' distributions directly. In this work, a computational fluid dynamic approach to simulating the primary and secondary atomization processes is developed by using the volume of fluid method and discrete phase model. By integrating the metal stream break-up (in primary atomization) with the flow field and particles distribution simulation (in second atomization), this numerical simulation method is able to provide the direct assessment for the atomisation process. To verify the method performance, the melt stream is initialized into a 4 mm-diameter stream, which is then injected into the gas flow field for further fragmentation. The experimental results show that the simulated particles' diameter distribution is consistent with the experimental results in the same conditions.
    [1]

    Chandrasekhar S B, Wasekar N P, Ramakrishna M, Suresh Babu P, Rao T N, Kashyap B P 2016 J. Alloys Compd. 656 423

    [2]

    Li S, Su Y, Ouyang Q, Zhang D 2016 Mater. Lett. 167 118

    [3]

    Chou D, Wells D, Hong D, Lee B, Kuhn H, Kumta P N 2013 Acta Biomater. 9 8593

    [4]

    Si C, Tang X, Zhang X, Wang J, Wu W 2017 Mater. Design 118 66

    [5]

    Ashgriz N 2011 Handbook of Atomization and Sprays (New York:Springer Verlag) p339

    [6]

    Kourmatzis A, Lowe A, Masri A R 2016 Exp. Therm. Fluid Sci. 75 66

    [7]

    Motaman S, Mullis A M, Cochrane R F, Borman D J 2015 Metall. Mater. Trans. B 46 1990

    [8]

    Zhang L N, Zhang M C, Li X, Xie X S 2001 Ordnance Material Science and Engineering 3 64 (in Chinese)[张丽娜, 张麦仓, 李晓, 谢锡善 2001 兵器材料科学与工程 3 64]

    [9]

    Guo K, Liu C, Chen S, Li J, Fu Q 2017 IOP Conference Series:Materials Science and Engineering 207 012046

    [10]

    Wei M W, Chen S Y, Guo K K, Liang J, Liu C S 2017 Materials Review 12 64 (in Chinese)[魏明炜, 陈岁元, 郭快快, 梁京, 刘常升 2017 材料导报 12 64]

    [11]

    Franz H, Plochl L, Schimansky F P 2008 Titanium 2008 September 21-24, 2008, Las vegas, USA, pp1-4

    [12]

    Guo K K, Liu C S, Chen S Y, Fu Q 2017 Materials Science and Technology 01 16 (in Chinese)[郭快快, 刘常升, 陈岁元, 付骞 2017 材料科学与工艺 01 16]

    [13]

    Feng S, Ge C C, Xia M 2017 Chin. Phys. B 26 1

    [14]

    Ting J, Anderson I E 2004 Mat. Sci. Eng. A:Struct. 379 264

    [15]

    Motaman S, Mullis A M, Cochrane R F, McCarthy I N, Borman D J 2013 Comput. Fluids 88 1

    [16]

    Zhao W, Cao F, Ning Z, Zhang G, Li Z, Sun J 2012 Comput. Chem. Eng. 40 58

    [17]

    Zeoli N, Gu S 2008 Comp. Mater. Sci. 43 268

    [18]

    Zeoli N, Gu S 2006 Comp. Mater. Sci. 38 282

    [19]

    Mi J, Figliola R S, Anderson I E 1996 Mat. Sci. Eng. A:Struct. 8 20

    [20]

    Antipas G S E 2009 Comp. Mater. Sci. 46 955

    [21]

    Ting J, Peretti M W, Eisen W B 2002 Mat. Sci. Eng. A:Struct. 326 110

    [22]

    Zeoli N, Tabbara H, Gu S 2011 Chem. Eng. Sci. 66 6498

    [23]

    Liu Y, Li Z, Zhang G Q, Xu W Y, Yuan H, Liu N 2015 J. Aeronautical Materials. 5 63 (in Chinese)[刘杨, 李周, 张国庆, 许文勇, 袁华, 刘娜 2015 航空材料学报 5 63]

    [24]

    Fritsching U 2004 Spray Simulation (Cambridge:Cambridge University Press) p11

    [25]

    Thompson J S, Hassan O, Rolland S A, Sienz J 2016 Powder Technol. 291 75

    [26]

    Firmansyah D A, Kaiser R, Zahaf R, Coker Z, Choi T, Lee D 2014 Jpn. J. Appl. Phys. 53 05HA09

    [27]

    Beale J C, Reitz R D 1999 Atomization Sprays 9 623

    [28]

    Fritsching U 2006 Spray Simulation:Modeling and Numerical Simulation of Sprayforming Metals (New York:American Society of Mechanical Engineers)

    [29]

    Versteeg H K, Malalasekera W 1995 An Introduction to Computational Fluid Dynamics (New York:Longman Scientific and Technical) p11

    [30]

    Markus S, Fritsching U, Bauckhage K 2002 Mat. Sci. Eng. A:Struct. 326 122

    [31]

    nal A 1989 Metall. Trans. B 20 61

    [32]

    Li X G, Fritsching U 2017 J. Mater. Process. Technol. 239 1

    [33]

    Borée J, Ishima T, Flour I 2001 J. Fluid Mech. 443 129

  • [1]

    Chandrasekhar S B, Wasekar N P, Ramakrishna M, Suresh Babu P, Rao T N, Kashyap B P 2016 J. Alloys Compd. 656 423

    [2]

    Li S, Su Y, Ouyang Q, Zhang D 2016 Mater. Lett. 167 118

    [3]

    Chou D, Wells D, Hong D, Lee B, Kuhn H, Kumta P N 2013 Acta Biomater. 9 8593

    [4]

    Si C, Tang X, Zhang X, Wang J, Wu W 2017 Mater. Design 118 66

    [5]

    Ashgriz N 2011 Handbook of Atomization and Sprays (New York:Springer Verlag) p339

    [6]

    Kourmatzis A, Lowe A, Masri A R 2016 Exp. Therm. Fluid Sci. 75 66

    [7]

    Motaman S, Mullis A M, Cochrane R F, Borman D J 2015 Metall. Mater. Trans. B 46 1990

    [8]

    Zhang L N, Zhang M C, Li X, Xie X S 2001 Ordnance Material Science and Engineering 3 64 (in Chinese)[张丽娜, 张麦仓, 李晓, 谢锡善 2001 兵器材料科学与工程 3 64]

    [9]

    Guo K, Liu C, Chen S, Li J, Fu Q 2017 IOP Conference Series:Materials Science and Engineering 207 012046

    [10]

    Wei M W, Chen S Y, Guo K K, Liang J, Liu C S 2017 Materials Review 12 64 (in Chinese)[魏明炜, 陈岁元, 郭快快, 梁京, 刘常升 2017 材料导报 12 64]

    [11]

    Franz H, Plochl L, Schimansky F P 2008 Titanium 2008 September 21-24, 2008, Las vegas, USA, pp1-4

    [12]

    Guo K K, Liu C S, Chen S Y, Fu Q 2017 Materials Science and Technology 01 16 (in Chinese)[郭快快, 刘常升, 陈岁元, 付骞 2017 材料科学与工艺 01 16]

    [13]

    Feng S, Ge C C, Xia M 2017 Chin. Phys. B 26 1

    [14]

    Ting J, Anderson I E 2004 Mat. Sci. Eng. A:Struct. 379 264

    [15]

    Motaman S, Mullis A M, Cochrane R F, McCarthy I N, Borman D J 2013 Comput. Fluids 88 1

    [16]

    Zhao W, Cao F, Ning Z, Zhang G, Li Z, Sun J 2012 Comput. Chem. Eng. 40 58

    [17]

    Zeoli N, Gu S 2008 Comp. Mater. Sci. 43 268

    [18]

    Zeoli N, Gu S 2006 Comp. Mater. Sci. 38 282

    [19]

    Mi J, Figliola R S, Anderson I E 1996 Mat. Sci. Eng. A:Struct. 8 20

    [20]

    Antipas G S E 2009 Comp. Mater. Sci. 46 955

    [21]

    Ting J, Peretti M W, Eisen W B 2002 Mat. Sci. Eng. A:Struct. 326 110

    [22]

    Zeoli N, Tabbara H, Gu S 2011 Chem. Eng. Sci. 66 6498

    [23]

    Liu Y, Li Z, Zhang G Q, Xu W Y, Yuan H, Liu N 2015 J. Aeronautical Materials. 5 63 (in Chinese)[刘杨, 李周, 张国庆, 许文勇, 袁华, 刘娜 2015 航空材料学报 5 63]

    [24]

    Fritsching U 2004 Spray Simulation (Cambridge:Cambridge University Press) p11

    [25]

    Thompson J S, Hassan O, Rolland S A, Sienz J 2016 Powder Technol. 291 75

    [26]

    Firmansyah D A, Kaiser R, Zahaf R, Coker Z, Choi T, Lee D 2014 Jpn. J. Appl. Phys. 53 05HA09

    [27]

    Beale J C, Reitz R D 1999 Atomization Sprays 9 623

    [28]

    Fritsching U 2006 Spray Simulation:Modeling and Numerical Simulation of Sprayforming Metals (New York:American Society of Mechanical Engineers)

    [29]

    Versteeg H K, Malalasekera W 1995 An Introduction to Computational Fluid Dynamics (New York:Longman Scientific and Technical) p11

    [30]

    Markus S, Fritsching U, Bauckhage K 2002 Mat. Sci. Eng. A:Struct. 326 122

    [31]

    nal A 1989 Metall. Trans. B 20 61

    [32]

    Li X G, Fritsching U 2017 J. Mater. Process. Technol. 239 1

    [33]

    Borée J, Ishima T, Flour I 2001 J. Fluid Mech. 443 129

  • [1] 袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟. 第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质. 物理学报, 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] 金烜, 沈赤兵. 横向气膜作用下液体射流在近喷孔区域的破碎雾化特性. 物理学报, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 徐金鑫, 陈超越, 沈鹭宇, 玄伟东, 黎兴刚, 帅三三, 李霞, 胡涛, 李传军, 余建波, 王江, 任忠鸣. 层流气体雾化制粉工艺粉末形貌及雾化机理. 物理学报, 2021, 70(14): 140201. doi: 10.7498/aps.70.20202071
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [8] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演. 物理学报, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [9] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响. 物理学报, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [10] 徐军, 陈钢. 热处理温度对量子点粒度分布的影响. 物理学报, 2015, 64(12): 127302. doi: 10.7498/aps.64.127302
    [11] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素. 物理学报, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [12] 陈聪, 李定国, 蒋治国, 刘华波. 二次等效法求三层媒质中静态电偶极子的场分布. 物理学报, 2012, 61(24): 244101. doi: 10.7498/aps.61.244101
    [13] 张宇, 葛昌纯, 郭彪, 沈卫平. 喷射成形FGH4095的热变形特征. 物理学报, 2012, 61(21): 218102. doi: 10.7498/aps.61.218102
    [14] 张宇, 葛昌纯, 沈卫平, 邱成杰. 喷射成型FGH4095静态再结晶组织特征. 物理学报, 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [15] 孙光爱, Darren Hughes, Thilo Pirling, Vincent Ji, 陈波, 陈华, 吴二冬, 张俊. 中子衍射法研究单晶镍基高温合金热机械疲劳引起的应力和晶格错配. 物理学报, 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [16] 徐秀玮, 任廷琦, 迟永江, 朱友良, 刘姝延. 多模玻色二次多项式型系统的特性函数和准概率分布函数. 物理学报, 2006, 55(8): 3892-3897. doi: 10.7498/aps.55.3892
    [17] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究. 物理学报, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [18] 孟昭富, 王群, 宋广生. 非晶合金Al88Ce2Ni9Fe1回火生成的纳米晶粒度分布与比内表面研究. 物理学报, 1996, 45(4): 619-627. doi: 10.7498/aps.45.619
    [19] 郭常霖, 陆昌伟, 沈定坤, 俞志中. 二次锂电池电极材料非晶态MoS3的结构研究. 物理学报, 1985, 34(10): 1336-1341. doi: 10.7498/aps.34.1336
    [20] 王其闵, 王遂福, 窦仲伟, 郭懋端. 铝-镁合金的高温变形机构. 物理学报, 1965, 21(9): 1681-1688. doi: 10.7498/aps.21.1681
计量
  • 文章访问数:  8927
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-05-10
  • 刊出日期:  2018-09-05

/

返回文章
返回