搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层流气体雾化制粉工艺粉末形貌及雾化机理

徐金鑫 陈超越 沈鹭宇 玄伟东 黎兴刚 帅三三 李霞 胡涛 李传军 余建波 王江 任忠鸣

引用本文:
Citation:

层流气体雾化制粉工艺粉末形貌及雾化机理

徐金鑫, 陈超越, 沈鹭宇, 玄伟东, 黎兴刚, 帅三三, 李霞, 胡涛, 李传军, 余建波, 王江, 任忠鸣

Atomization mechanism and powder morphology in laminar flow gas atomization

Xu Jin-Xin, Chen Chao-Yue, Shen Lu-Yu, Xuan Wei-Dong, Li Xing-Gang, Shuai San-San, Li Xia, Hu Tao, Li Chuan-Jun, Yu Jian-Bo, Wang Jiang, Ren Zhong-Ming
PDF
HTML
导出引用
  • 层流气体雾化制备的金属粉末具有粒径较小且粒度分布窄的优点, 目前对层流气体雾化的研究主要集中在工艺参数对雾化效果和粉末特性的影响, 其雾化机理仍不完全清楚. 本文通过数值模拟和实验分析, 系统地研究了层流气体雾化过程中的雾化气体流场、一次雾化和二次雾化机理以及最终的粉末颗粒形态. 采用标准k-ε湍流模型, 研究了基于De Laval喷嘴的层流雾化单相气体流场, 流场呈“项链”状结构, 并伴有斜激波的膨胀波团. 采用耦合水平集-体积分数法研究了一次雾化和二次雾化机理, 并通过雾化实验得到了凝固碎片和粉末, 验证了该模型的有效性, 数值模拟结果也为层流气雾化制粉技术的实际应用和具体工艺提供了重要参考. 研究表明, 液柱周围的熔体主要以细丝或韧带的形式剥离, 这显示出了增压低维度雾化的特点. 二次雾化过程中球形液滴主要基于Rayleigh-Taylor不稳定变形和Sheet-Thinning破碎模式分解破碎, 丝状熔体则主要以曲张波表面发生扰动从而引起波谷处破裂的方式进行破碎.
    Metal powders prepared by laminar flow gas atomization have the advantages of small particle size and narrow particle size distribution. At present, the research on laminar flow gas atomization mainly focuses on the influence of process parameters on atomization and powder characteristics, but the atomization mechanism of laminar flow gas atomization is still not clear. In this work, the atomization gas flow, primary and secondary breakup mechanism, and particle morphology of the laminar flow gas atomization process are systematically investigated through numerical simulation and experimental analysis. The characteristics of single-phase atomization gas flow through the De Laval nozzle are studied using the standard k-ε turbulence model. The flow field structure shows a “necklace”-like structure with an expansion wave cluster of oblique shock. The primary and secondary atomization mechanism are investigated using the coupled level-set and volume-of-fluid model, which is validated by solidified fragments and powders after the atomization experiment, and results of the numerical simulation also provide some important advices for the application and specific process of laminar gas atomization technology. The studies indicate that the melts at the periphery of the liquid column are mainly peeled off by filaments or ligaments, which exhibits the small dimension and pressurized melt atomization characteristics. The secondary atomization is mainly based on the disintegration of spherical droplets in the mode of Rayleigh-Taylor instability deformation and sheet-thinning breakup. The simulation results also show that increasing the gas pressure and melt superheat can effectively reduce the probability of irregular powders to occur. The AlSi10Mg powders are obtained under a pressure of 2.0 MPa in the experiment on gas atomization, and the properties of the powders are analyzed. The results show that the powders have good sphericity and flowability, and the proportion of hollow powders is very low. In addition, the mean particle size of the AlSi10Mg powders is 54.3 μm, and the yield of fine powders reaches 48.7%, which is greatly improved compared with the traditional gas atomization processes. Moreover, about 90% of the powders have particle sizes in a range of 30–100 μm, which indicates that a narrow particle size distribution can be obtained by the laminar gas atomization technology.
      通信作者: 陈超越, cchen1@shu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1106400)、国家自然科学基金青年科学基金(批准号: 52001191)、国家航空发动机和燃气轮机重大专项(批准号: 2017VII00080102)、上海青年科技英才扬帆计划(批准号: 19YF1415900)、上海青年科技启明星计划(批准号: 20QA1403800)和上海市科委基础研究项目(批准号: 19DZ1100704)资助的课题.
      Corresponding author: Chen Chao-Yue, cchen1@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1106400), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52001191), the National Science and Technology Major Project “Aeroengine and Gas Turbine”, China (Grant No. 2017VII00080102), the Shanghai Science and Technology Sailing Program for Young Talents, China (Grant No. 19YF1415900), the Shanghai Rising-Star Program for Young Scientists, China (Grant No. 20QA1403800), and the Shanghai Science and Technology Committee, China (Grant No. 19DZ1100704)
    [1]

    Chen C Y, Xie Y C, Yan X C, Yin S, Fukanuma H, Huang R Z, Zhao R X, Wang J, Ren Z M, Liu M, Liao H L 2019 Addit. Manuf. 27 595Google Scholar

    [2]

    Frazier W E 2014 J. Mater. Eng. Perform. 23 1917Google Scholar

    [3]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [4]

    Jia W M, Chen S Y, Wei M W, Liang J, Liu C S, Li J G 2019 Powder Metall. 62 30Google Scholar

    [5]

    Gerling R, Schimansky F P, Wegmann G 2010 Adv. Eng. Mater. 3 387Google Scholar

    [6]

    Liu M J, Zhang K J, Zhang Q, Zhang M, Yang G J, Li C X, Li C J 2019 Appl. Surf. Sci. 471 950Google Scholar

    [7]

    Balbaa M A, Ghasemi A, Fereiduni E, Elbestawi M A, Jadhav S D, Kruth J P 2020 Addit. Manuf. 10163Google Scholar

    [8]

    Baitimerov R, Lykov P, Zherebtsov D, Radionova L, Shultc A, Prashanth K G 2018 Materials (Basel) 11 742Google Scholar

    [9]

    Maskery I, Aboulkhair N T, Corfield M R, Tuck C, Clare A T, Leach R K, Wildman R D, Ashcroft I A, Hague R J M 2016 Mater. Charact. 111 193Google Scholar

    [10]

    Henein H, Uhlenwinkel V, Fritsching U 2017 Metal Sprays and Spray Deposition (Cham: Springer)pp 49−70

    [11]

    Wei M W, Chen S Y, Sun M, Liang J, Liu C S, Wang M 2020 Powder Technol. 367 724Google Scholar

    [12]

    Wei M W, Chen S Y, Liang J, Liu C S 2017 Vacuum 143 185

    [13]

    Park J M, Na T W, Park H K, Yang S M, Kang J W, Lee T W 2019 Mater. Lett. 243 5Google Scholar

    [14]

    Li X G, Fritsching U 2017 J. Mater. Process. Technol. 239 1Google Scholar

    [15]

    Thompson J S, Hassan O, Rolland S A, Sienz J 2016 Powder Technol. 291 75Google Scholar

    [16]

    Planche M P, Khatim O, Dembinski L, Bailly Y, Coddet C 2013 Mater. Chem. Phys. 137 681Google Scholar

    [17]

    Schulz G 1996 Met. Powder Rep. 51 30Google Scholar

    [18]

    Stobik M 2000 Adv. Eng. Mater. 2 547

    [19]

    Ahmed M, Pasha M, Nan W G, Ghadiri M 2020 Powder Technol. 367 671Google Scholar

    [20]

    Yu S S, Zhang P C, Qiu K H, Zhang W T, Li J F, Yao S, Zhou D Y, Yao N N, Li J C 2018 Ferroelectrics 530 25Google Scholar

    [21]

    Allimant A, Planche M P, Bailly Y, Dembinski L, Coddet C 2009 Powder Technol. 190 79Google Scholar

    [22]

    Khatim O, Planche M P, Dembinski L, Bailly Y, Coddet C 2010 Surf. Coat. Technol. 205 1171Google Scholar

    [23]

    Kaiser R, Li C G, Yang S S, Lee D G 2018 Adv. Powder Technol. 29 623Google Scholar

    [24]

    Mi J, Figliola R S, Anderson I E 1997 Metall. Mater. Trans. B 28 935Google Scholar

    [25]

    Ting J, Anderson I E 2004 Mater. Sci. Eng. A 379 264Google Scholar

    [26]

    Xiao F, Dianat M, McGuirk J J 2014 Atomization Sprays 24 281Google Scholar

    [27]

    夏敏, 汪鹏, 张晓虎, 葛昌纯 2018 物理学报 67 170201Google Scholar

    Xia M, Wang P, Zhang X H, Ge C C 2018 Acta Phys. Sin. 67 170201Google Scholar

    [28]

    戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704Google Scholar

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704Google Scholar

    [29]

    Shao C X, Luo K, Yang J S, Chen S, Fan J R 2015 Chin. J. Chem. Eng. 23 597Google Scholar

    [30]

    Rabin B H, Swank W D, Wright R N 2013 Nucl. Eng. Des. 262 72Google Scholar

    [31]

    Beale J C, Reitz R D 1999 Atomization Sprays 9 623Google Scholar

    [32]

    Yang Q, Liu Y T, Liu J, Wang L, Chen Z, Wang M L, Zhong S Y, Wu Y, Wang H W 2019 Mater. Des. 182 108045Google Scholar

    [33]

    Sarkar S, Sivaprasad P V, Bakshi S 2016 Atomization Sprays 26 23Google Scholar

    [34]

    Markus S, Fritsching U 2006 Int. J. Powder Metall. 42 23

    [35]

    Strotos G, Malgarinos I, Nikolopoulos N, Gavaises M 2016 Int. J. Multiphase Flow 85 96Google Scholar

    [36]

    Su Y H, Tsao C Y A 1997 Metall. Mater. Trans. B 28 1249Google Scholar

    [37]

    Guildenbecher D R, Lopez R C, Sojka P E 2009 Exp. Fluids 46 371Google Scholar

    [38]

    Guildenbecher D R, Lopez R C, Sojka P E 2011 Handbook of Atomization and Sprays: Theory and Applications (Boston: Springer US) pp145−156

    [39]

    Pilch M, Erdman C A 1987 Int. J. Multiphase Flow 13 741Google Scholar

    [40]

    Ashgriz N, Li X, Sarchami A 2011 Handbook of Atomization and Sprays: Instability of Liquid Sheets (Boston: Springer US) pp75−95

    [41]

    Chuech S G 2006 Int. J. Numer. Methods Fluids 50 1461Google Scholar

    [42]

    Dai Z, Faeth G M 2001 Int. J. Multiphase Flow 27 217Google Scholar

    [43]

    Yang W, Jia M, Sun K, Wang T Y 2016 Fuel 174 25Google Scholar

    [44]

    舒适 2018 硕士学位论文 (北京: 有色金属研究总院)

    Shu S 2018 M. S. Thesis (Beijing: General Research Institute for Nonferrous Metals) (in Chinese)

  • 图 1  层流气体雾化过程示意图

    Fig. 1.  Illustration of laminar flow gas atomization process.

    图 2  自主设计的气雾化设备示意图

    Fig. 2.  Schematic diagram of home-made gas atomization equipment.

    图 3  (a)层流气体雾化喷嘴系统及流场结构示意图; (b)气体单相计算域、网格划分及边界条件

    Fig. 3.  (a) Schematic of the nozzle system and flow field structure in the laminar flow gas atomization; (b) computational domain and mesh grid of single-phase, and primary atomization with boundary conditions.

    图 4  液滴飞行过程中受力平衡示意图

    Fig. 4.  Schematic diagram of the force balance on the in-flight droplets.

    图 5  二次雾化数值模拟的计算域、网格和边界条件

    Fig. 5.  Computational domain, mesh, and boundary conditions for numerical simulation of secondary atomization.

    图 6  (a)入口压力为2.0 MPa时流场中的气体速度矢量; (b)入口压力为2.0 MPa时的雾化气体速度等值线

    Fig. 6.  (a) Gas velocity vector depicting flow characteristics at pressure inlet of 2.0 MPa; (b) atomizing gas velocity contours at an inlet pressure of 2.0 MPa.

    图 7  气体流场特性 (a)不同入口压力下沿喷嘴中心线的气体速度曲线; (b)不同入口压力下沿喷嘴中心线的气体压力曲线

    Fig. 7.  Gas flow field characteristics: (a) Gas velocity curve along nozzle center-line under different inlet pressures; (b) gas pressure curve along nozzle center-line under different inlet pressures.

    图 8  De Laval喷嘴的一次雾化过程 (a)初始阶段; (b)稳定阶段

    Fig. 8.  Primary atomization process with the De Laval nozzle: (a) Initial period; (b) stable period.

    图 9  (a) 导流管出口处的凝固熔体; (b) De Laval喷嘴扩张段一次雾化后凝固熔体的形态

    Fig. 9.  (a) Solidified melts at the outlet of the delivery tube; (b) morphology of solidified melts after primary atomization at the divergent section of De Laval nozzle.

    图 10  (a) 气液两相速度矢量; (b) 在t = 0.20 ms下一次雾化中熔体形态的比较

    Fig. 10.  Comparison of (a) two-phase velocity vector; (b) morphology of melt in primary atomization at t = 0.20 ms.

    图 11  大液滴形态 (a)不规则薄片; (b)不规则棒状

    Fig. 11.  Morphology of huge droplet: (a) Irregular flake; (b) irregular bar.

    图 12  不同尺寸液滴在气流中的速度随飞行时间的变化

    Fig. 12.  The velocity of droplets with different sizes in gas flow as a function of flying time.

    图 13  (a)典型的液滴破碎模式[14]; (b)液滴破碎过程的阴影图像[38]

    Fig. 13.  (a) Schematic diagram of typical droplet breakup modes[14]; (b) shadowgraph of droplet breakup process[38].

    图 14  丝状熔体的不同扰动模式 (a) 扩张(对称)扰动; (b)弯曲(不对称)扰动

    Fig. 14.  (a) Dilatational (symmetric) disturbance; (b) sinuous (asymmetric) disturbance of liquid ligaments.

    图 15  液滴破碎的不同阶段及雾化气流的运动规律

    Fig. 15.  Atomizing gas streamline moving with droplet at different breakup stages.

    图 16  (a) Rayleigh-Taylor不稳定变形; (b) Sheet-Thinning破碎机理[37,43]

    Fig. 16.  (a) Rayleigh-Taylor instability deformation; (b) Sheet-Thinning breakup mechanism[37,43].

    图 17  (a) 层流气流雾化粉末的截面特性; (b) 三角形粉末的扫描电镜图像

    Fig. 17.  (a) Cross-section characteristics of laminar flow gas atomized powders; (b) SEM images of triangular powder.

    图 18  熔融韧带的二次雾化过程

    Fig. 18.  Secondary atomization process of melt ligaments.

    图 19  层流气体雾化制备粉末的扫描电镜图像

    Fig. 19.  SEM image of powders prepared using laminar flow gas atomization.

    图 20  AlSi10Mg粉末表征 (a) 粒径分布; (b) 球形度; (c) XCT三维重构形貌图

    Fig. 20.  Characterization of AlSi10Mg powders: (a) Particle size distribution; (b) sphericity; (c) 3D surface view reconstructed by XCT.

    图 21  De Laval喷嘴层流雾化过程

    Fig. 21.  Processes of laminar flow atomization with De Laval nozzle.

    表 1  单相流模型的模拟参数

    Table 1.  Simulation parameters of the single-phase flow model.

    参数数值
    入口压力/MPa1.01.52.02.53.0
    出口压力/MPa0.1
    下载: 导出CSV

    表 2  数值模拟中使用的AlSi10Mg合金和氩气的特性参数[30]

    Table 2.  Properties of AlSi10Mg alloy and argon used for numerical simulation[30].

    材料参数数值
    AlSi10Mg比热容/(J·kg–1·K–1)871
    密度/(kg·m–3)2719
    黏度/(kg·m–1·s–1)0.0135
    导热系数/(W·m–1·K–1)202.4
    表面张力/(N·m–1)0.854
    Ar比热容/(J·kg–1·K–1)520.64
    导热系数/(W·m–1·K–1)0.0158
    黏度/(kg·m–1·s–1)2.125 × 10–5
    下载: 导出CSV

    表 3  一次雾化模拟参数

    Table 3.  Simulation parameters of primary atomization.

    参数数值
    入口压力/MPa2.0
    出口压力/MPa0.1
    质量流量/(g·s–1)20
    熔体初始温度/K1073
    下载: 导出CSV

    表 4  二次雾化的数值模拟参数

    Table 4.  Parameters for numerical simulation of the secondary breakup.

    参数数值
    入口速度/(m·s–1)400
    液滴直径/μm1000
    丝状熔体尺寸/μmφ50 × 500
    下载: 导出CSV

    表 A1  文中所用参数

    Table A1.  Parameters in the article.

    ${{\rho } }_{\rm{g} }$气体密度
    t时间
    ${{u} }_{{i} }$$ {x}_{i} $方向上的速度分量
    ${{u} }_{{j} }$$ {x}_{j} $方向上的速度分量
    ${{\mu } }$动力黏度
    ${{\tau } }_{{ij} }$雷诺应力张量
    ${{S} }_{{i} }$动量守恒方程的广义源项
    ${{S} }_{\rm{T} }$粘性耗散函数
    T温度
    K热导率
    k湍流动能
    ${{\varepsilon } }$湍流动能耗散率
    ${{G} }_{{k} }$平均速度梯度引起的湍流动能k
    ${{G} }_{\rm{b} }$浮力产生湍流动能k
    ${{Y} }_{\rm{M} }$可压缩湍流中脉动膨胀
    ${\mu }_{{t} }$湍流黏度
    ${{S} }_{{k} }$, ${{S} }_{{\varepsilon } }$源项
    v速度矢量
    P压力
    ${{\tau } }$粘性应力张量
    ${{\sigma } }$表面张力
    $ \alpha $体积相分数
    g重力加速度
    ${{F} }_{\sigma }$体积表面张力
    ${{F} }_{\rm{D} }$阻力
    ${{A} }_{\rm{d} }$液滴最大截面积
    ${{p} }_{\rm{dg} }$气体作用在液滴上的压力
    ${{u} }_{\rm{g} }$气流速度
    ${{u} }_{\rm{d} }$液滴速度
    ${{\mu } }_{\rm{g} }$气体黏性系数
    ${{C} }_{\rm{D} }$阻力系数
    d特征长度
    ${{\rho } }_{\rm{d} }$液滴密度
    ${{V} }_{\rm{d} }$液滴体积
    ${{Re} }$雷诺数
    u特征速度
    ${{We} }$韦伯数
    下载: 导出CSV
  • [1]

    Chen C Y, Xie Y C, Yan X C, Yin S, Fukanuma H, Huang R Z, Zhao R X, Wang J, Ren Z M, Liu M, Liao H L 2019 Addit. Manuf. 27 595Google Scholar

    [2]

    Frazier W E 2014 J. Mater. Eng. Perform. 23 1917Google Scholar

    [3]

    Gu D D, Meiners W, Wissenbach K, Poprawe R 2012 Int. Mater. Rev. 57 133Google Scholar

    [4]

    Jia W M, Chen S Y, Wei M W, Liang J, Liu C S, Li J G 2019 Powder Metall. 62 30Google Scholar

    [5]

    Gerling R, Schimansky F P, Wegmann G 2010 Adv. Eng. Mater. 3 387Google Scholar

    [6]

    Liu M J, Zhang K J, Zhang Q, Zhang M, Yang G J, Li C X, Li C J 2019 Appl. Surf. Sci. 471 950Google Scholar

    [7]

    Balbaa M A, Ghasemi A, Fereiduni E, Elbestawi M A, Jadhav S D, Kruth J P 2020 Addit. Manuf. 10163Google Scholar

    [8]

    Baitimerov R, Lykov P, Zherebtsov D, Radionova L, Shultc A, Prashanth K G 2018 Materials (Basel) 11 742Google Scholar

    [9]

    Maskery I, Aboulkhair N T, Corfield M R, Tuck C, Clare A T, Leach R K, Wildman R D, Ashcroft I A, Hague R J M 2016 Mater. Charact. 111 193Google Scholar

    [10]

    Henein H, Uhlenwinkel V, Fritsching U 2017 Metal Sprays and Spray Deposition (Cham: Springer)pp 49−70

    [11]

    Wei M W, Chen S Y, Sun M, Liang J, Liu C S, Wang M 2020 Powder Technol. 367 724Google Scholar

    [12]

    Wei M W, Chen S Y, Liang J, Liu C S 2017 Vacuum 143 185

    [13]

    Park J M, Na T W, Park H K, Yang S M, Kang J W, Lee T W 2019 Mater. Lett. 243 5Google Scholar

    [14]

    Li X G, Fritsching U 2017 J. Mater. Process. Technol. 239 1Google Scholar

    [15]

    Thompson J S, Hassan O, Rolland S A, Sienz J 2016 Powder Technol. 291 75Google Scholar

    [16]

    Planche M P, Khatim O, Dembinski L, Bailly Y, Coddet C 2013 Mater. Chem. Phys. 137 681Google Scholar

    [17]

    Schulz G 1996 Met. Powder Rep. 51 30Google Scholar

    [18]

    Stobik M 2000 Adv. Eng. Mater. 2 547

    [19]

    Ahmed M, Pasha M, Nan W G, Ghadiri M 2020 Powder Technol. 367 671Google Scholar

    [20]

    Yu S S, Zhang P C, Qiu K H, Zhang W T, Li J F, Yao S, Zhou D Y, Yao N N, Li J C 2018 Ferroelectrics 530 25Google Scholar

    [21]

    Allimant A, Planche M P, Bailly Y, Dembinski L, Coddet C 2009 Powder Technol. 190 79Google Scholar

    [22]

    Khatim O, Planche M P, Dembinski L, Bailly Y, Coddet C 2010 Surf. Coat. Technol. 205 1171Google Scholar

    [23]

    Kaiser R, Li C G, Yang S S, Lee D G 2018 Adv. Powder Technol. 29 623Google Scholar

    [24]

    Mi J, Figliola R S, Anderson I E 1997 Metall. Mater. Trans. B 28 935Google Scholar

    [25]

    Ting J, Anderson I E 2004 Mater. Sci. Eng. A 379 264Google Scholar

    [26]

    Xiao F, Dianat M, McGuirk J J 2014 Atomization Sprays 24 281Google Scholar

    [27]

    夏敏, 汪鹏, 张晓虎, 葛昌纯 2018 物理学报 67 170201Google Scholar

    Xia M, Wang P, Zhang X H, Ge C C 2018 Acta Phys. Sin. 67 170201Google Scholar

    [28]

    戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704Google Scholar

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704Google Scholar

    [29]

    Shao C X, Luo K, Yang J S, Chen S, Fan J R 2015 Chin. J. Chem. Eng. 23 597Google Scholar

    [30]

    Rabin B H, Swank W D, Wright R N 2013 Nucl. Eng. Des. 262 72Google Scholar

    [31]

    Beale J C, Reitz R D 1999 Atomization Sprays 9 623Google Scholar

    [32]

    Yang Q, Liu Y T, Liu J, Wang L, Chen Z, Wang M L, Zhong S Y, Wu Y, Wang H W 2019 Mater. Des. 182 108045Google Scholar

    [33]

    Sarkar S, Sivaprasad P V, Bakshi S 2016 Atomization Sprays 26 23Google Scholar

    [34]

    Markus S, Fritsching U 2006 Int. J. Powder Metall. 42 23

    [35]

    Strotos G, Malgarinos I, Nikolopoulos N, Gavaises M 2016 Int. J. Multiphase Flow 85 96Google Scholar

    [36]

    Su Y H, Tsao C Y A 1997 Metall. Mater. Trans. B 28 1249Google Scholar

    [37]

    Guildenbecher D R, Lopez R C, Sojka P E 2009 Exp. Fluids 46 371Google Scholar

    [38]

    Guildenbecher D R, Lopez R C, Sojka P E 2011 Handbook of Atomization and Sprays: Theory and Applications (Boston: Springer US) pp145−156

    [39]

    Pilch M, Erdman C A 1987 Int. J. Multiphase Flow 13 741Google Scholar

    [40]

    Ashgriz N, Li X, Sarchami A 2011 Handbook of Atomization and Sprays: Instability of Liquid Sheets (Boston: Springer US) pp75−95

    [41]

    Chuech S G 2006 Int. J. Numer. Methods Fluids 50 1461Google Scholar

    [42]

    Dai Z, Faeth G M 2001 Int. J. Multiphase Flow 27 217Google Scholar

    [43]

    Yang W, Jia M, Sun K, Wang T Y 2016 Fuel 174 25Google Scholar

    [44]

    舒适 2018 硕士学位论文 (北京: 有色金属研究总院)

    Shu S 2018 M. S. Thesis (Beijing: General Research Institute for Nonferrous Metals) (in Chinese)

  • [1] 谭超, 梁勇, 邹敏, 雷同, 陈龙, 唐平华, 刘明伟. 基于不同变系数和势场的分数系统中二次相位调控厄米-高斯光束动力学. 物理学报, 2024, 73(13): 134205. doi: 10.7498/aps.73.20240427
    [2] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量. 物理学报, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [3] 金烜, 沈赤兵. 横向气膜作用下液体射流在近喷孔区域的破碎雾化特性. 物理学报, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [4] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法. 物理学报, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [7] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [8] 夏敏, 汪鹏, 张晓虎, 葛昌纯. 电极感应熔化气雾化制粉技术中非限制式喷嘴雾化过程模拟. 物理学报, 2018, 67(17): 170201. doi: 10.7498/aps.67.20180584
    [9] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫. 气雾化辅助激光诱导击穿光谱检测水中的痕量金属元素. 物理学报, 2015, 64(2): 024212. doi: 10.7498/aps.64.024212
    [10] 宋张代, 张林. 二次耦合光力学系统的一类高维可控自持振荡行为. 物理学报, 2013, 62(20): 204204. doi: 10.7498/aps.62.204204
    [11] 王文元, 杨阳, 蒙红娟, 马莹, 祁鹏堂, 马云云, 段文山. Fermi超流气体在unitarity区域和Bose-Einstein 凝聚区域的自俘获现象研究. 物理学报, 2012, 61(10): 100301. doi: 10.7498/aps.61.100301
    [12] 刘磊, 费建芳, 黄小刚, 程小平. 大气-海浪-海流耦合模式的建立和一次台风过程的初步试验. 物理学报, 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [13] 陆曹卫, 卢志超, 孙 克, 李德仁, 周少雄. 水雾化制备Fe74Al4Sn2P10C2B4Si4非晶合金粉末及其磁粉芯性能研究. 物理学报, 2006, 55(5): 2553-2556. doi: 10.7498/aps.55.2553
    [14] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [15] 吴健荣. 广义系统族的二次稳定与二次镇定. 物理学报, 2004, 53(2): 325-330. doi: 10.7498/aps.53.325
    [16] 刘启明, 赵修建, 干福熹. Ge-As-S体系玻璃中光学二次谐波发生及其极化机理分析. 物理学报, 2000, 49(9): 1726-1730. doi: 10.7498/aps.49.1726
    [17] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性. 物理学报, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [18] 朱昂如, 吴西林. 用能化电子效应考察二次离子的发射机理. 物理学报, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
    [19] 林金谷, 刘承惠, 朱振和, 赖瑞生, 霍崇儒. 用非共线二次谐波法实现对锁模激光器超短脉冲宽度的测定. 物理学报, 1980, 29(3): 406-408. doi: 10.7498/aps.29.406
    [20] 邹本三, 叶恒强, 吴玉琨, 郭可信. 面心立方晶体高次孪晶化为一次旋转对称关系. 物理学报, 1979, 28(3): 297-304. doi: 10.7498/aps.28.297
计量
  • 文章访问数:  8524
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-06
  • 修回日期:  2021-02-28
  • 上网日期:  2021-07-12
  • 刊出日期:  2021-07-20

/

返回文章
返回