-
用速凝和连续冷轧方法制备了定向织构Dy薄片, 研究了薄片厚度和磁结构等对其磁性能的影响. 结果表明, 速凝Dy薄片的磁性能比冷轧Dy薄片差, 冷轧Dy薄片的磁化强度和磁导率与厚度、温度等密切相关. 在Dy的居里温度以下, 冷轧Dy薄片具有明显的软磁特征, 从77 K下降到4.2 K, 冷轧Dy薄片的饱和磁化强度增大了5%—8%; 当温度为4.2 K时, 0.15 mm冷轧Dy薄片饱和磁化强度达到2880 kA/m, 0.10 mm冷轧Dy薄片最大磁导率接近30. 当温度低于85 K时, 较大磁场强度下冷轧Dy薄片的低温磁化强度大于常规钴钒铁. 定向织构Dy薄片的低温磁性能和氧含量及(0001)晶面的取向程度密切相关. 本研究为制备低温波荡器大块定向织构Dy软磁体奠定了技术工艺及方法原理基础.Directional textured dysprosium foils are fabricated by rapid solidification and sequential cold rolling, and the influences of their thickness values and magnetic structures on magnetic properties are analyzed and studied. The results show that magnetic properties of cold-rolled dysprosium foils are better than those of rapid solidification dysprosium foils, and the magnetization and permeability for each of the cold-rolled dysprosium foils are related to the thickness and temperature. Below Curie temperature, the cold-rolled dysprosium foils have obvious soft magnetic properties in a temperature range from 77 K to 4.2 K, the saturation magnetization for each of cold-rolled dysprosium foils increases by 5%-8%, and the saturation magnetization of 0.15-mm-thick cold-rolled dysprosium foil arrives at 2880 kA/m at 4.2 K, and the maximum permeability of cold-rolled 0.10-mm-thick dysprosium foil approaches to 30. The cryogenic magnetization of cold-rolled dysprosium foil with a strong external magnetic field is higher than that of conventional Co-V-Fe below 85 K. The cryogenic magnetic properties of textured dysprosium foils are related to the oxygen content and the orientation degree of (0001) crystal plane. The present study lays the foundation of technology and principle for preparing the chunky directional textured dysprosium soft magnet for cryogenic undulator.
-
Keywords:
- cryogenic undulator /
- texture Dy /
- cold rolling /
- magnetic properties.
[1] 麦振洪 2013 同步辐射光源及其应用 (北京: 科学出版社) 第 90 页
Mai Z H 2013 Synchrotron Radiation and its Applications (Beijing: Science Press) p90 (in Chinese)
[2] 何永周 2015 博士学位论文 (北京: 中国科学院大学)
He Y Z 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[3] Grau A, Casalbuoni S, Gerstl S, Glamann N, Holubek T, Saez de Jauregui D, Voutta R, Boffo C, Gerhard T, Turenne M, Walter W 2016 IEEE Trans. Appl. Supercond. 26 4100804Google Scholar
[4] Bahrdt J, Gluskin E 2018 Nucl. Instr. Meth. Phys. Res. A 907 149Google Scholar
[5] 周寿增, 董清飞 1999 超强永磁体 (北京: 冶金工业出版社) 第283页
Zhou S H, Dong Q F 1999 Super Power Permanent Magnet (Beijing: Metallurgical Industry Press) p283 (in Chinese)
[6] 钟文定 2008 技术磁学 (北京: 科学出版社) 第2页
Zhong W D 2008 Technical Magnetism. (Beijing: Science Press) p2 (in Chinese)
[7] Chen C W 1961 J. Appl. Phys. 32 S348Google Scholar
[8] Barlow D B, Kraus R H, Lobb C T, Menzel M T, Walstrom P L 1992 Nucl. Instr. Meth. Phys. Res. A 313 311Google Scholar
[9] Bird M D, Bole S, Dixon I, Eyssa Y M, Gao B J, Schneider-Muntau H J 2001 Phys. B: Condens. Matter. 294 639Google Scholar
[10] Gottschalk S C, Pindroh A L, Quimby D C, Robinson K E, Slater J M 1991 Nucl. Instr. Meth. Phys. Res. A 304 732Google Scholar
[11] Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar
[12] Mishra S, Därmann C, Lücke K 1984 Acta. Metall. 32 2185Google Scholar
[13] Murokn A, Solovyov V, Agustsson R, O'Shea F H, Chubar O, Chen Y, Grandsaert T 2014 Nucl. Instr. Meth. Phys. Res. A 735 521Google Scholar
[14] Rhyne J J, Clark A E 1967 J. Appl. Phys 38 1379Google Scholar
[15] Swift W, Mathur M 1974 IEEE Trans. Magn. 10 308Google Scholar
[16] 戴闻 1995 河北师范大学学报 (自然科学版) 19 51
Dai W 1995 J. Hebei Normal Univ.: Nat. Sci. Ed. 19 51
-
图 8 77 K冷轧Dy薄片与常规软磁的磁化曲线. *1J22与DTC4磁化曲线测试样环: Φ28 mm × Φ20 mm × 5 mm, H ≤ 0.0125 T为实测数据, H ≥ 0.0125 T为推测数据
Fig. 8. M-H curves of cold-rolled Dy foils and conventional soft magnet at 77 K. * ring for M-H curve of conventional 1J22 and DTC4: Φ28 mm × Φ20 mm × 5 mm, M-H curves with H ≤ 0.0125 T are measured data, and the M-H curves with H ≥ 0.0125 T are calculated data.
-
[1] 麦振洪 2013 同步辐射光源及其应用 (北京: 科学出版社) 第 90 页
Mai Z H 2013 Synchrotron Radiation and its Applications (Beijing: Science Press) p90 (in Chinese)
[2] 何永周 2015 博士学位论文 (北京: 中国科学院大学)
He Y Z 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)
[3] Grau A, Casalbuoni S, Gerstl S, Glamann N, Holubek T, Saez de Jauregui D, Voutta R, Boffo C, Gerhard T, Turenne M, Walter W 2016 IEEE Trans. Appl. Supercond. 26 4100804Google Scholar
[4] Bahrdt J, Gluskin E 2018 Nucl. Instr. Meth. Phys. Res. A 907 149Google Scholar
[5] 周寿增, 董清飞 1999 超强永磁体 (北京: 冶金工业出版社) 第283页
Zhou S H, Dong Q F 1999 Super Power Permanent Magnet (Beijing: Metallurgical Industry Press) p283 (in Chinese)
[6] 钟文定 2008 技术磁学 (北京: 科学出版社) 第2页
Zhong W D 2008 Technical Magnetism. (Beijing: Science Press) p2 (in Chinese)
[7] Chen C W 1961 J. Appl. Phys. 32 S348Google Scholar
[8] Barlow D B, Kraus R H, Lobb C T, Menzel M T, Walstrom P L 1992 Nucl. Instr. Meth. Phys. Res. A 313 311Google Scholar
[9] Bird M D, Bole S, Dixon I, Eyssa Y M, Gao B J, Schneider-Muntau H J 2001 Phys. B: Condens. Matter. 294 639Google Scholar
[10] Gottschalk S C, Pindroh A L, Quimby D C, Robinson K E, Slater J M 1991 Nucl. Instr. Meth. Phys. Res. A 304 732Google Scholar
[11] Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar
[12] Mishra S, Därmann C, Lücke K 1984 Acta. Metall. 32 2185Google Scholar
[13] Murokn A, Solovyov V, Agustsson R, O'Shea F H, Chubar O, Chen Y, Grandsaert T 2014 Nucl. Instr. Meth. Phys. Res. A 735 521Google Scholar
[14] Rhyne J J, Clark A E 1967 J. Appl. Phys 38 1379Google Scholar
[15] Swift W, Mathur M 1974 IEEE Trans. Magn. 10 308Google Scholar
[16] 戴闻 1995 河北师范大学学报 (自然科学版) 19 51
Dai W 1995 J. Hebei Normal Univ.: Nat. Sci. Ed. 19 51
计量
- 文章访问数: 4153
- PDF下载量: 31
- 被引次数: 0