搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温波荡器定向织构Dy薄片的磁性能

何永周 王杰

引用本文:
Citation:

低温波荡器定向织构Dy薄片的磁性能

何永周, 王杰

Magnetic properties of directional textured dysprosium foils for cryogenic undulator

He Yong-Zhou, Wang Jie
PDF
HTML
导出引用
  • 用速凝和连续冷轧方法制备了定向织构Dy薄片, 研究了薄片厚度和磁结构等对其磁性能的影响. 结果表明, 速凝Dy薄片的磁性能比冷轧Dy薄片差, 冷轧Dy薄片的磁化强度和磁导率与厚度、温度等密切相关. 在Dy的居里温度以下, 冷轧Dy薄片具有明显的软磁特征, 从77 K下降到4.2 K, 冷轧Dy薄片的饱和磁化强度增大了5%—8%; 当温度为4.2 K时, 0.15 mm冷轧Dy薄片饱和磁化强度达到2880 kA/m, 0.10 mm冷轧Dy薄片最大磁导率接近30. 当温度低于85 K时, 较大磁场强度下冷轧Dy薄片的低温磁化强度大于常规钴钒铁. 定向织构Dy薄片的低温磁性能和氧含量及(0001)晶面的取向程度密切相关. 本研究为制备低温波荡器大块定向织构Dy软磁体奠定了技术工艺及方法原理基础.
    Directional textured dysprosium foils are fabricated by rapid solidification and sequential cold rolling, and the influences of their thickness values and magnetic structures on magnetic properties are analyzed and studied. The results show that magnetic properties of cold-rolled dysprosium foils are better than those of rapid solidification dysprosium foils, and the magnetization and permeability for each of the cold-rolled dysprosium foils are related to the thickness and temperature. Below Curie temperature, the cold-rolled dysprosium foils have obvious soft magnetic properties in a temperature range from 77 K to 4.2 K, the saturation magnetization for each of cold-rolled dysprosium foils increases by 5%-8%, and the saturation magnetization of 0.15-mm-thick cold-rolled dysprosium foil arrives at 2880 kA/m at 4.2 K, and the maximum permeability of cold-rolled 0.10-mm-thick dysprosium foil approaches to 30. The cryogenic magnetization of cold-rolled dysprosium foil with a strong external magnetic field is higher than that of conventional Co-V-Fe below 85 K. The cryogenic magnetic properties of textured dysprosium foils are related to the oxygen content and the orientation degree of (0001) crystal plane. The present study lays the foundation of technology and principle for preparing the chunky directional textured dysprosium soft magnet for cryogenic undulator.
      通信作者: 何永周, heyongzhou@zjlab.org.cn
    • 基金项目: 上海市自然科学基金 (批准号: 19ZR1463700)资助的课题.
      Corresponding author: He Yong-Zhou, heyongzhou@zjlab.org.cn
    • Funds: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 19ZR1463700)
    [1]

    麦振洪 2013 同步辐射光源及其应用 (北京: 科学出版社) 第 90 页

    Mai Z H 2013 Synchrotron Radiation and its Applications (Beijing: Science Press) p90 (in Chinese)

    [2]

    何永周 2015 博士学位论文 (北京: 中国科学院大学)

    He Y Z 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [3]

    Grau A, Casalbuoni S, Gerstl S, Glamann N, Holubek T, Saez de Jauregui D, Voutta R, Boffo C, Gerhard T, Turenne M, Walter W 2016 IEEE Trans. Appl. Supercond. 26 4100804Google Scholar

    [4]

    Bahrdt J, Gluskin E 2018 Nucl. Instr. Meth. Phys. Res. A 907 149Google Scholar

    [5]

    周寿增, 董清飞 1999 超强永磁体 (北京: 冶金工业出版社) 第283页

    Zhou S H, Dong Q F 1999 Super Power Permanent Magnet (Beijing: Metallurgical Industry Press) p283 (in Chinese)

    [6]

    钟文定 2008 技术磁学 (北京: 科学出版社) 第2页

    Zhong W D 2008 Technical Magnetism. (Beijing: Science Press) p2 (in Chinese)

    [7]

    Chen C W 1961 J. Appl. Phys. 32 S348Google Scholar

    [8]

    Barlow D B, Kraus R H, Lobb C T, Menzel M T, Walstrom P L 1992 Nucl. Instr. Meth. Phys. Res. A 313 311Google Scholar

    [9]

    Bird M D, Bole S, Dixon I, Eyssa Y M, Gao B J, Schneider-Muntau H J 2001 Phys. B: Condens. Matter. 294 639Google Scholar

    [10]

    Gottschalk S C, Pindroh A L, Quimby D C, Robinson K E, Slater J M 1991 Nucl. Instr. Meth. Phys. Res. A 304 732Google Scholar

    [11]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar

    [12]

    Mishra S, Därmann C, Lücke K 1984 Acta. Metall. 32 2185Google Scholar

    [13]

    Murokn A, Solovyov V, Agustsson R, O'Shea F H, Chubar O, Chen Y, Grandsaert T 2014 Nucl. Instr. Meth. Phys. Res. A 735 521Google Scholar

    [14]

    Rhyne J J, Clark A E 1967 J. Appl. Phys 38 1379Google Scholar

    [15]

    Swift W, Mathur M 1974 IEEE Trans. Magn. 10 308Google Scholar

    [16]

    戴闻 1995 河北师范大学学报 (自然科学版) 19 51

    Dai W 1995 J. Hebei Normal Univ.: Nat. Sci. Ed. 19 51

  • 图 1  实验Dy样品 (a) Dy轧制片; (b) 冷轧Dy薄片; (c) 速凝Dy薄片

    Fig. 1.  Experiment Dy sample: (a) Dy rolled sheet; (b) cold-rolled Dy foils; (C) strip cooling Dy foils.

    图 2  (a) 单晶Dy结构; (b) 冷轧态Dy; (c) 退火态Dy

    Fig. 2.  (a) Three-dimensional structure of single crystal Dy; (b) cold-rolled Dy; (c) annealed Dy.

    图 3  X射线衍射图

    Fig. 3.  X-ray diffraction 2θ scans.

    图 4  冷轧Dy薄片退火前后的背散射照片 (a) 轧制态Dy; (b) 0.05 mm退火态Dy; (c) 0.075 mm退火态Dy; (d) 0.10 mm退火态Dy

    Fig. 4.  Backscatter photographs of cold-rolled Dy foils before and after annealing: (a) Rolled Dy; (b) 0.05 mm annealed Dy; (c) 0.075 mm annealed Dy; (d) 0.10 mm annealed Dy.

    图 5  4.2 K时冷轧Dy薄片[0001]方向磁性能 (a) 磁化曲线; (b) 磁导率

    Fig. 5.  Magnetic properties of [0001] direction for cold-rolled Dy foils at 4.2 K: (a) Magnetization curve; (b) permeability.

    图 6  Dy薄片磁化曲线 (a) 77 K; (b) 4.2 K

    Fig. 6.  Magnetization curves of Dy foils: (a) 77 K; (b) 4.2 K.

    图 7  冷轧Dy薄片的磁性能 (a) M-T; (b) 磁导率@77 K

    Fig. 7.  Magnetic properties of cold-rolled Dy foils: (a) M-T; (b) permeability @ 77 K.

    图 8  77 K冷轧Dy薄片与常规软磁的磁化曲线. *1J22与DTC4磁化曲线测试样环: Φ28 mm × Φ20 mm × 5 mm, H ≤ 0.0125 T为实测数据, H ≥ 0.0125 T为推测数据

    Fig. 8.  M-H curves of cold-rolled Dy foils and conventional soft magnet at 77 K. * ring for M-H curve of conventional 1J22 and DTC4: Φ28 mm × Φ20 mm × 5 mm, M-H curves with H ≤ 0.0125 T are measured data, and the M-H curves with H ≥ 0.0125 T are calculated data.

  • [1]

    麦振洪 2013 同步辐射光源及其应用 (北京: 科学出版社) 第 90 页

    Mai Z H 2013 Synchrotron Radiation and its Applications (Beijing: Science Press) p90 (in Chinese)

    [2]

    何永周 2015 博士学位论文 (北京: 中国科学院大学)

    He Y Z 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [3]

    Grau A, Casalbuoni S, Gerstl S, Glamann N, Holubek T, Saez de Jauregui D, Voutta R, Boffo C, Gerhard T, Turenne M, Walter W 2016 IEEE Trans. Appl. Supercond. 26 4100804Google Scholar

    [4]

    Bahrdt J, Gluskin E 2018 Nucl. Instr. Meth. Phys. Res. A 907 149Google Scholar

    [5]

    周寿增, 董清飞 1999 超强永磁体 (北京: 冶金工业出版社) 第283页

    Zhou S H, Dong Q F 1999 Super Power Permanent Magnet (Beijing: Metallurgical Industry Press) p283 (in Chinese)

    [6]

    钟文定 2008 技术磁学 (北京: 科学出版社) 第2页

    Zhong W D 2008 Technical Magnetism. (Beijing: Science Press) p2 (in Chinese)

    [7]

    Chen C W 1961 J. Appl. Phys. 32 S348Google Scholar

    [8]

    Barlow D B, Kraus R H, Lobb C T, Menzel M T, Walstrom P L 1992 Nucl. Instr. Meth. Phys. Res. A 313 311Google Scholar

    [9]

    Bird M D, Bole S, Dixon I, Eyssa Y M, Gao B J, Schneider-Muntau H J 2001 Phys. B: Condens. Matter. 294 639Google Scholar

    [10]

    Gottschalk S C, Pindroh A L, Quimby D C, Robinson K E, Slater J M 1991 Nucl. Instr. Meth. Phys. Res. A 304 732Google Scholar

    [11]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar

    [12]

    Mishra S, Därmann C, Lücke K 1984 Acta. Metall. 32 2185Google Scholar

    [13]

    Murokn A, Solovyov V, Agustsson R, O'Shea F H, Chubar O, Chen Y, Grandsaert T 2014 Nucl. Instr. Meth. Phys. Res. A 735 521Google Scholar

    [14]

    Rhyne J J, Clark A E 1967 J. Appl. Phys 38 1379Google Scholar

    [15]

    Swift W, Mathur M 1974 IEEE Trans. Magn. 10 308Google Scholar

    [16]

    戴闻 1995 河北师范大学学报 (自然科学版) 19 51

    Dai W 1995 J. Hebei Normal Univ.: Nat. Sci. Ed. 19 51

  • [1] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究. 物理学报, 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [2] 马爽, 郝玮晔, 王旭东, 张伟, 姚曼. 类金属元素影响Co-Y-B合金非晶形成能力和磁性能的机制分析. 物理学报, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [3] 熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏. FeNiMo/SiO2复合粉芯的制备与软磁性能调控. 物理学报, 2022, 71(15): 157502. doi: 10.7498/aps.71.20212317
    [4] 何永周, 王杰. 低温波荡器定向织构Dy薄片的磁性能研究. 物理学报, 2022, (): . doi: 10.7498/aps.71.20210952
    [5] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [6] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [7] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [8] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] 何永周. 大块永磁铁低温剩磁测量技术研究. 物理学报, 2013, 62(21): 217502. doi: 10.7498/aps.62.217502
    [10] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [11] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [12] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [13] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [14] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [15] 刘涛, 李卫. 时效工艺对PtCo合金磁性能的影响. 物理学报, 2009, 58(8): 5773-5777. doi: 10.7498/aps.58.5773
    [16] 张 然, 刘 颖, 高升吉, 谢 治, 涂铭旌. 添加Dy在快淬NdFeB永磁体中的作用. 物理学报, 2008, 57(1): 526-530. doi: 10.7498/aps.57.526
    [17] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [18] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [19] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [20] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
计量
  • 文章访问数:  3639
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-11-15
  • 上网日期:  2021-12-21
  • 刊出日期:  2021-12-20

/

返回文章
返回