搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导烧结对TOPCon太阳电池接触性能影响

谢一博 方超炎 陈德爽 何悦 黄仕华

引用本文:
Citation:

激光诱导烧结对TOPCon太阳电池接触性能影响

谢一博, 方超炎, 陈德爽, 何悦, 黄仕华
cstr: 32037.14.aps.73.20241372

Influence of laser induced sintering on contact performance of TOPCon solar cells

Xie Yi-Bo, Fang Chao-Yan, Chen De-Shuang, He Yue, Huang Shi-Hua
cstr: 32037.14.aps.73.20241372
PDF
HTML
导出引用
  • 激光诱导烧结又称为激光增强接触优化(LECO), 可以显著降低TOPCon太阳电池金属电极与硅之间的接触电阻, 提高电池效率. 首先, 本文研究了反向偏压、激光强度等LECO工艺参数对TOPCon电池性能的影响, 并对其影响机理进行了详细的讨论与分析. 其次, 研究了二次高温烧结与二次LECO工艺对电池性能的影响. 当二次烧结温度从280 ℃升高至680 ℃时, 电池效率从26.35%急剧下降至1.3%. 但是, 对经过二次高温烧结的电池片再进行二次LECO处理, 电池效率可以恢复到二次高温烧结前的水平. 采用改良后的纯银浆料制备的TOPCon电池, 在没有经过LECO处理之前, 由于银电极与硅没有形成有效的金属半导体接触, 电池平均效率只有0.02%. 经过LECO处理后, 使用纯银浆料的电池效率提升至26.35%, 比使用传统银铝浆料的参考电池提高了0.41%. 最后提出了LECO工艺诱导银-硅接触形成的物理模型, 对二次高温烧结及二次LECO处理如何影响电池性能给出了合理的解释, 这对于进一步理解和优化LECO工艺在TOPCon太阳电池中的应用具有重要意义.
    Laser induced sintering, also known as laser enhanced contact optimization (LECO), can significantly reduce the contact resistance between metal electrodes and silicon in TOPCon solar cells, thereby improving its efficiency. In this work, the effects of LECO process parameters such as reverse bias and laser intensity on the performance of TOPCon solar cells are investigated and their influencing mechanisms are analyzed in detail. In the LECO process, as the reverse bias voltage increases, the efficiency of the solar cell first increases and then decreases, while the contact resistivity first decreases and then increases. When the reverse bias voltage is high, the solar cell may experience reverse breakdown. Once the solar cell experiences reverse breakdown, both the illuminated and non-illuminated areas become conducting. Due to the current diversion effect, the local conducting current density in the illuminated area is much lower than the current density without reverse breakdown of the solar cell, Therefore, the Joule heating caused by this is also much smaller, and the contact resistance between the metal and silicon increases, resulting in a decrease in the efficiency of the solar cell.Secondly, the influence of secondary high-temperature sintering and secondary LECO on the performance of TOPCon is studied. When the secondary sintering temperature increases from 280 ℃ to 680 ℃, the efficiency of TOPCon sharply decreases from 26.35% to 1.3%. However, by subjecting the solar cells that have undergone secondary high-temperature sintering to secondary LECO treatment, the efficiency can be restored to the level before the secondary high-temperature sintering. Thirdly, TOPCon solar cells prepared using improved pure silver paste does not form effective metal-semiconductor contact between the silver electrode and silicon before LECO treatment, resulting in an average efficiency of only 0.02%. However, after LECO treatment, the efficiency of solar cells using pure silver paste increases to 26.35%, which is 0.41% higher than the reference solar cells using traditional silver aluminum paste. Fourthly, a physical model of LECO induced silver-silicon contact formation is proposed, providing a reasonable explanation for how secondary high-temperature sintering and secondary LECO treatment affect the performance of TOPCon. This is of great significance for further understanding and optimizing the application of LECO technology in TOPCon solar cells.
      通信作者: 何悦, hey@dmegc.com.cn ; 黄仕华, huangshihua@zjnu.cn
    • 基金项目: 浙江省重点研发计划(批准号: 2021C01006)资助的课题.
      Corresponding author: He Yue, hey@dmegc.com.cn ; Huang Shi-Hua, huangshihua@zjnu.cn
    • Funds: Project supported by the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01006).
    [1]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270Google Scholar

    [2]

    Richter A, Müller R, Benick J 2021 Nat. Energy 6 429Google Scholar

    [3]

    Anderson C L, Nemeth W, Guthrey H 2023 Adv. Energy Mater. 13 2203579Google Scholar

    [4]

    Römer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85Google Scholar

    [5]

    Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energy Mater. Sol. Cells 186 184Google Scholar

    [6]

    Hermle M, Feldmann F, Bivour M, Goldschmidt J C, Glunz S W 2020 Appl. Phys. Rev. 7 021305Google Scholar

    [7]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 2017 Acta Phys. Sin. 66 158801Google Scholar

    [8]

    任程超, 周佳凯, 刘璋, 赵颖, 张晓丹, 侯国付 2021 物理学报 70 178401Google Scholar

    Ren C C, Zhou J K, Zhang B Y, Liu Z, Zhao Y, Zhang X D, Hou G F 2021 Acta Phys. Sin. 70 178401Google Scholar

    [9]

    Yan D, Cuevas A, Michel J, Zhang C, Wan Y M, Zhang X Y, Bullock J 2021 Joule 5 811Google Scholar

    [10]

    Glunz S W, Steinhauser B, Polzin J, Luderer C, Grübel B, Niewelt T, Okasha A, Bories M, Nagel H, Krieg K, Feldmann F, Richter A, Bivour M, Hermle M 2021 Prog. Photovolt. Res. Appl 31 341Google Scholar

    [11]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017 Sol. Energy Mater. Sol. Cells 173 96Google Scholar

    [12]

    Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46Google Scholar

    [13]

    Schmidt J, Peibst R, Brendel R. 2018 Sol. Energy Mater. Sol. Cells 187 39Google Scholar

    [14]

    Zhang X Y, Dumbrell R, Li W Q, Xu M Y, Yan D, Jin J S, Wang Z, Zheng P T, Liu C M, Yang J 2023 Prog. Photovolt.: Res. Appl. 31 369Google Scholar

    [15]

    VDMA 2023 International Technology Roadmap for Photovoltaic p60

    [16]

    https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-3 [2023-10-23]

    [17]

    Wang Q Q, Guo K Y, Yuan L, Li L Z, Peng H, Li B R, Wang A L, Zhang L Z, Wu W P, Ding J N, Yuan N Y 2023 Sol. Energy Mater. Sol. Cells 253 112231Google Scholar

    [18]

    Allen T G, Bullock J, Yang X, Javey A, Wolf S D 2019 Nat. Energy 4 914Google Scholar

    [19]

    Cuevas A, Wan Y M, Yan D, Samundsett C, Allen T, Zhang X, Cui J, Bullock J 2018 Sol. Energy Mater. Sol. Cells 184 38Google Scholar

    [20]

    Riegel S, Mutter F, Lauermann T, Terheiden B, Hahn G 2012 Energy Proc. 21 14Google Scholar

    [21]

    Fritz S, Konig M, Riegel S, Herguth A, Horteis M, Hahn G 2015 IEEE J. Photovoltaics 5 145Google Scholar

    [22]

    Kumar P, Pfeffer M, Willsch B, Eibl O, Koduvelikulathu L J, Mihailetchi L J, Kopecek R 2016 Sol. Energy Mater. Sol. Cells 157 200Google Scholar

    [23]

    Urban T, Heimann M, Schmid A, Mette A, Heitmann J 2015 Energy Proc. 77 420Google Scholar

    [24]

    Aoyama T, Aoki M, Sumita I, Yoshino Y, Ogura A 2016 Energy Proc. 98 106Google Scholar

    [25]

    Fritz S, Emre E, Engelhardt J, Ebert S, Nowak N, Booth J, Hahn G 2016 Energy Proc. 92 925Google Scholar

    [26]

    Mack S, Schube J, Fellmeth T, Feldmann F, Lenes M, Luchies J 2017 Phys. Rapid Res. Lett. 11 1700334Google Scholar

    [27]

    Kiefer F, Krugener J, Heinemeyer F, Osten H J, Brendel R, Peibst R 2016 IEEE J. Photovoltaics 6 1175Google Scholar

    [28]

    Liang L, Li Z G, Cheng L K, Takeda N, Carroll A F 2015 J. Appl. Phys. 117 215102Google Scholar

    [29]

    Fritz S, Engelhardt J, Ebert S, Hahn G 2016 Phys. Status Solidi RRL 10 305Google Scholar

    [30]

    Mayberry R, Myers K, Chandrasekaran V, Henning A, Zhao H, Hofmüller E 2019 36th European Photovoltaic Solar Energy Conference and Exhibition Marseille, France, September 9–13, 2019

    [31]

    Krassowski E, Großer S, Turek M, Henning A, Zhao H 2021 AIP Conf. Proc. 2367 020005Google Scholar

    [32]

    Fellmeth T, Höffler H, Mack S, Krassowski E, Krieg K, Kafle B, Greulich J 2022 Prog. Photovolt. Res. Appl. 30 1393Google Scholar

    [33]

    Fan Y, Zou S, Zeng Y L, Dai L F, Wang Z P, Lu Z, Sun H, Zhou X S, Liao B C, Su X D 2024 Solar RRL 8 2400268Google Scholar

    [34]

    Dasgupta S, Ok Y W, Upadhyaya V D, Choi W J, Huang Y Y, Duttagupta Y, Rohatgi A 2022 IEEE J. Photovoltaics 12 1282Google Scholar

    [35]

    Kuruganti V V, Isabella O, Mihailetchi V D 2024 Phys. Status Solidi A 221 2300820Google Scholar

    [36]

    Höffler H, Fellmeth T, Maischner F, Greulich J, Krassowski E, Henning A 2022 AIP Conf. Proc. 2487 110001Google Scholar

    [37]

    Großer S, Krassowski E, Swatek S, Zhao H, Hagendorf C 2022 IEEE J. Photovolt. 12 26Google Scholar

    [38]

    Höffler H, Simon F, Krassowski E, Greulich J 2022 AIP Conference Proceedings 2826 040002Google Scholar

  • 图 1  (a) TOPCon电池的结构示意图; (b) TOPCon电池制备工艺流程示意图; (c) LECO工艺原理示意图, 激光在电池片局部诱导产生的高密度光生载流子(电子和空穴), 在反向偏压下向电池金属电极接触点迁移, 并在接触界面处产生大的电流密度

    Fig. 1.  (a) Schematic diagram of TOPCon solar cells; (b) schematic diagram of preparation process for TOPCon solar cells; (c) schematic diagram of LECO process principle. The high-density photogenerated carriers (electrons and holes) induced by laser in the local area of the solar cells migrate towards the contact point of the metal electrode under reverse bias, and generate a large current density at the contact interface.

    图 2  (a) 两条金属副栅线之间测量的简单等效电路; (b) TLM方法中电阻与电极间距的函数关系; (c) TLM方法的测试结构

    Fig. 2.  (a) Simple equivalent circuit for measurements between two metal subgate lines; (b) resistance as a function of electrode spacing in TLM method; (c) test structure of TLM method.

    图 3  (a) 反向偏压对电池效率与接触电阻率的影响; (b) 反向偏压对开路电压与填充因子的影响; (c) 激光光强对电池效率与填充因子的影响; (d) 激光光强对开路电压与短路电流的影响

    Fig. 3.  (a) Influence of reverse bias on cell efficiency and contact resistivity; (b) influence of reverse bias on open circuit voltage and fill factor; (c) influence of laser intensity on efficiency and fill factor; (d) influence of laser intensity open-circuit voltage and short-circuit current.

    图 4  TOPCon电池在暗态下的I-V曲线

    Fig. 4.  I-V curves of TOPCon solar cells in the dark state.

    图 5  (a), (b)二次烧结温度对电池效率与填充因子、开路电压与短路电流的影响; (c), (d) 二次烧结温度以及随后的二次LECO工艺对接触电阻、电池效率的影响

    Fig. 5.  (a), (b) Influence of secondary sintering temperature on efficiency and filling factor, open circuit voltage and short circuit current; (c), (d) influences of secondary firing temperature and subsequent secondary LECO process on contact resistivity, efficiency of solar cells

    图 6  二次烧结温度(a)以及随后的二次LECO工艺(b)对电池EL图像的影响

    Fig. 6.  Influences of secondary firing temperature (a) and subsequent secondary LECO process (b) on EL images of solar cells.

    图 7  不同浆料在经过LECO工艺前后对电池效率影响

    Fig. 7.  Influence of different slurries on the efficiency of solar cells before and after LECO process.

    图 8  样品A, B, C的微观结构 (a) 样品A的SEM图像; (b) 样品A的局部SEM图像; (c)图(b)的FIB-SEM截面图; (d)样品B的SEM图像; (e) 样品B的FIB-SEM截面图; (f)图(e)的EDS图谱; (g)样品C的SEM图像; (h) 样品C的FIB-SEM截面图; (i)图(h)的EDS图谱

    Fig. 8.  Microstructure of samples A, B, C: (a) SEM image of sample A; (b) FIB-SEM cross-section of sample A; (c) EDS pattern of panel (b); (d) SEM image of sample B; (e) FIB-SEM cross-section of sample B; (f) EDS pattern of panel (e); (g) SEM image of sample C; (h) FIB-SEM cross-section; (i) EDS pattern of panel (h).

    表 1  不同浆料在经过LECO工艺后对电池性能的影响

    Table 1.  Influence of different slurries on the performance of solar cells after LECO process.

    VOC/mVJSC/(mA·cm–2)FFEff/%
    传统银铝浆料74042.030.83425.94
    改良后纯银浆料74342.050.84426.35
    下载: 导出CSV
  • [1]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270Google Scholar

    [2]

    Richter A, Müller R, Benick J 2021 Nat. Energy 6 429Google Scholar

    [3]

    Anderson C L, Nemeth W, Guthrey H 2023 Adv. Energy Mater. 13 2203579Google Scholar

    [4]

    Römer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energy Mater. Sol. Cells 131 85Google Scholar

    [5]

    Haase F, Hollemann C, Schäfer S, Merkle A, Rienäcker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energy Mater. Sol. Cells 186 184Google Scholar

    [6]

    Hermle M, Feldmann F, Bivour M, Goldschmidt J C, Glunz S W 2020 Appl. Phys. Rev. 7 021305Google Scholar

    [7]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 2017 Acta Phys. Sin. 66 158801Google Scholar

    [8]

    任程超, 周佳凯, 刘璋, 赵颖, 张晓丹, 侯国付 2021 物理学报 70 178401Google Scholar

    Ren C C, Zhou J K, Zhang B Y, Liu Z, Zhao Y, Zhang X D, Hou G F 2021 Acta Phys. Sin. 70 178401Google Scholar

    [9]

    Yan D, Cuevas A, Michel J, Zhang C, Wan Y M, Zhang X Y, Bullock J 2021 Joule 5 811Google Scholar

    [10]

    Glunz S W, Steinhauser B, Polzin J, Luderer C, Grübel B, Niewelt T, Okasha A, Bories M, Nagel H, Krieg K, Feldmann F, Richter A, Bivour M, Hermle M 2021 Prog. Photovolt. Res. Appl 31 341Google Scholar

    [11]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017 Sol. Energy Mater. Sol. Cells 173 96Google Scholar

    [12]

    Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 131 46Google Scholar

    [13]

    Schmidt J, Peibst R, Brendel R. 2018 Sol. Energy Mater. Sol. Cells 187 39Google Scholar

    [14]

    Zhang X Y, Dumbrell R, Li W Q, Xu M Y, Yan D, Jin J S, Wang Z, Zheng P T, Liu C M, Yang J 2023 Prog. Photovolt.: Res. Appl. 31 369Google Scholar

    [15]

    VDMA 2023 International Technology Roadmap for Photovoltaic p60

    [16]

    https://ir.jinkosolar.com/news-releases/news-release-details/jinkosolars-high-efficiency-n-type-monocrystalline-silicon-3 [2023-10-23]

    [17]

    Wang Q Q, Guo K Y, Yuan L, Li L Z, Peng H, Li B R, Wang A L, Zhang L Z, Wu W P, Ding J N, Yuan N Y 2023 Sol. Energy Mater. Sol. Cells 253 112231Google Scholar

    [18]

    Allen T G, Bullock J, Yang X, Javey A, Wolf S D 2019 Nat. Energy 4 914Google Scholar

    [19]

    Cuevas A, Wan Y M, Yan D, Samundsett C, Allen T, Zhang X, Cui J, Bullock J 2018 Sol. Energy Mater. Sol. Cells 184 38Google Scholar

    [20]

    Riegel S, Mutter F, Lauermann T, Terheiden B, Hahn G 2012 Energy Proc. 21 14Google Scholar

    [21]

    Fritz S, Konig M, Riegel S, Herguth A, Horteis M, Hahn G 2015 IEEE J. Photovoltaics 5 145Google Scholar

    [22]

    Kumar P, Pfeffer M, Willsch B, Eibl O, Koduvelikulathu L J, Mihailetchi L J, Kopecek R 2016 Sol. Energy Mater. Sol. Cells 157 200Google Scholar

    [23]

    Urban T, Heimann M, Schmid A, Mette A, Heitmann J 2015 Energy Proc. 77 420Google Scholar

    [24]

    Aoyama T, Aoki M, Sumita I, Yoshino Y, Ogura A 2016 Energy Proc. 98 106Google Scholar

    [25]

    Fritz S, Emre E, Engelhardt J, Ebert S, Nowak N, Booth J, Hahn G 2016 Energy Proc. 92 925Google Scholar

    [26]

    Mack S, Schube J, Fellmeth T, Feldmann F, Lenes M, Luchies J 2017 Phys. Rapid Res. Lett. 11 1700334Google Scholar

    [27]

    Kiefer F, Krugener J, Heinemeyer F, Osten H J, Brendel R, Peibst R 2016 IEEE J. Photovoltaics 6 1175Google Scholar

    [28]

    Liang L, Li Z G, Cheng L K, Takeda N, Carroll A F 2015 J. Appl. Phys. 117 215102Google Scholar

    [29]

    Fritz S, Engelhardt J, Ebert S, Hahn G 2016 Phys. Status Solidi RRL 10 305Google Scholar

    [30]

    Mayberry R, Myers K, Chandrasekaran V, Henning A, Zhao H, Hofmüller E 2019 36th European Photovoltaic Solar Energy Conference and Exhibition Marseille, France, September 9–13, 2019

    [31]

    Krassowski E, Großer S, Turek M, Henning A, Zhao H 2021 AIP Conf. Proc. 2367 020005Google Scholar

    [32]

    Fellmeth T, Höffler H, Mack S, Krassowski E, Krieg K, Kafle B, Greulich J 2022 Prog. Photovolt. Res. Appl. 30 1393Google Scholar

    [33]

    Fan Y, Zou S, Zeng Y L, Dai L F, Wang Z P, Lu Z, Sun H, Zhou X S, Liao B C, Su X D 2024 Solar RRL 8 2400268Google Scholar

    [34]

    Dasgupta S, Ok Y W, Upadhyaya V D, Choi W J, Huang Y Y, Duttagupta Y, Rohatgi A 2022 IEEE J. Photovoltaics 12 1282Google Scholar

    [35]

    Kuruganti V V, Isabella O, Mihailetchi V D 2024 Phys. Status Solidi A 221 2300820Google Scholar

    [36]

    Höffler H, Fellmeth T, Maischner F, Greulich J, Krassowski E, Henning A 2022 AIP Conf. Proc. 2487 110001Google Scholar

    [37]

    Großer S, Krassowski E, Swatek S, Zhao H, Hagendorf C 2022 IEEE J. Photovolt. 12 26Google Scholar

    [38]

    Höffler H, Simon F, Krassowski E, Greulich J 2022 AIP Conference Proceedings 2826 040002Google Scholar

  • [1] 田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威. 单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计. 物理学报, 2024, 73(17): 178801. doi: 10.7498/aps.73.20240732
    [2] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [3] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [4] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟. 物理学报, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [5] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [6] 郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕. 太阳电池阵二级轻气炮超高速撞击特性研究. 物理学报, 2019, 68(22): 220201. doi: 10.7498/aps.68.20191132
    [7] 赵生盛, 徐玉增, 陈俊帆, 张力, 侯国付, 张晓丹, 赵颖. 免掺杂、非对称异质接触晶体硅太阳电池的研究进展. 物理学报, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [8] 肖文波, 刘伟庆, 吴华明, 张华明. 太阳电池单二极管模型中的参数提取方法. 物理学报, 2018, 67(19): 198801. doi: 10.7498/aps.67.20181024
    [9] 陈培专, 于莉媛, 牛萍娟, 付贤松, 杨广华, 张建军, 侯国付. 锥形二维光子晶体太阳电池数值模拟. 物理学报, 2018, 67(2): 028802. doi: 10.7498/aps.67.20171689
    [10] 肖友鹏, 高超, 王涛, 周浪. 载流子选择性接触:高效硅太阳电池的选择. 物理学报, 2017, 66(15): 158801. doi: 10.7498/aps.66.158801
    [11] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [12] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [13] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 非晶硅太阳电池BZO/p-a-SiC:H接触特性改善的研究. 物理学报, 2013, 62(5): 058801. doi: 10.7498/aps.62.058801
    [14] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究. 物理学报, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [15] 闫悦, 赵谡玲, 徐征, 龚伟, 王大伟. 多环类苝四甲酸二酐插入层对ZnO纳米棒和聚合物复合太阳电池性能的影响. 物理学报, 2011, 60(8): 088803. doi: 10.7498/aps.60.088803
    [16] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [17] 张勇, 刘艳, 吕斌, 汤乃云, 王基庆, 张红英. 前端接触势垒高度对非晶硅和微晶硅异质结太阳电池的影响. 物理学报, 2009, 58(4): 2829-2835. doi: 10.7498/aps.58.2829
    [18] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
    [19] 宋慧瑾, 郑家贵, 冯良桓, 蔡 伟, 蔡亚萍, 张静全, 李 卫, 黎 兵, 武莉莉, 雷 智, 鄢 强. CdTe太阳电池的不同背电极和背接触层的特性研究. 物理学报, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
    [20] 贺剑雄, 郑家贵, 李 卫, 冯良桓, 蔡 伟, 蔡亚平, 张静全, 黎 兵, 雷 智, 武莉莉, 王文武. CdTe薄膜太阳电池背接触的研究. 物理学报, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
计量
  • 文章访问数:  821
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-11-13
  • 上网日期:  2024-11-19
  • 刊出日期:  2024-12-20

/

返回文章
返回