搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选区激光熔化AlCoCrCuFeNi高熵合金的半硬磁和微观力学行为研究

胡绪照 陈翔凌 徐震霖 张电宝 刘婧 夏爱林

引用本文:
Citation:

选区激光熔化AlCoCrCuFeNi高熵合金的半硬磁和微观力学行为研究

胡绪照, 陈翔凌, 徐震霖, 张电宝, 刘婧, 夏爱林

Study on the semi-hard magnetic and micromechanical behavior of AlCoCrCuFeNi high-entropy alloy prepared by selective laser melting

HU Xuzhao, CHEN Xiangling, XU Zhenlin, ZHANG Dianbao, LIU Jing, XIA Ailin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 磁性高熵合金在能量转换、磁滞电机、电磁控制机构等相关领域具有一定的应用前景。采用选区激光熔化(SLM)成形技术在不同工艺参数下制备出AlCoCrCuFeNi高熵合金,对合金的相组成、微观组织结构、磁性能和微观力学行为进行了系统研究。结果表明,SLM成形态合金主要由BCC基体相和少量近似球形的FCC纳米析出相组成,其纳米硬度随着激光功率的增加而减小,随着扫描速度的变化在一定范围波动,但是整体均呈现出优异的微观力学性能,且其纳米压痕蠕变变形机制异于传统经典蠕变理论,主要受位错运动控制。SLM成形态合金均表现出典型的半硬磁特性,其饱和磁化强度受SLM工艺参数影响较小,保持在43A·m2/kg左右;矫顽力随着激光功率的增加从1.72 kA/m增加到2.71 kA/m,随着扫描速度的增加从2.37 kA/m减小到1.98 kA/m。磁性能研究表明,该成形态AlCoCrCuFeNi高熵合金的磁性能有望广泛应用于磁控机构等领域。本工作可为后续优化SLM高熵合金的综合磁学性能以及纳米压痕室温蠕变机制提供一定的理论基础和试验方向。
    Magnetic high-entropy alloy (HEA) is prospective in the application of energy conversion, hysteresis motor, electromagnetic control mechanism and other related fields. In this study, AlCoCrCuFeNi HEA was prepared by selective laser melting (SLM) with different process parameters, and the phase composition, microstructure, magnetic properties and micromechanical behavior were studied systematically. The results show that the SLMed alloys mainly consist of a BCC matrix phase with a small amount of approximately spherical FCC precipitated nanophase. The nanohardness decreases with the increase of laser power and fluctuates in a certain range with the change of scanning speed, but the whole samples show excellent micromechanical properties. Besides, it was found the roomtemperature nanoindentation creep deformation mechanism of AlCoCrCuFeNi HEAs was mainly controlled by dislocation motion, which is different from the traditional classical creep theory. Both SLMed alloys exhibit typical semi-hard magnetic properties. The saturation magnetization is affected slightly by the SLM process parameters and remains at about 43 A·m2/kg because all samples have a similar content of ferromagnetic elements (Fe,Co and Ni). However, the coercivity increases from 1.72 kA/m to 2.71 kA/m with the increase of laser power (P), and decreases from 2.37 kA/m to 1.98 kA/m with the increase of scanning speed (v), which can be attributed to the different effect of porosity and internal stress on the pinning of domain walls under different process parameters (P and v). This work provides a theoretical basis and experimental direction for further study on optimizing comprehensive magnetic properties and room temperature creep mechanism of SLMed high-entropy alloy.
  • [1]

    Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184(in Chinese)[严密,彭晓领 2019 磁学基础与磁性材料 (杭州:浙江大学出版社)第184页]

    [2]

    Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Materialia 116 63

    [3]

    Huang P K, Yeh J W, Shun T T, Chen S K 2004 Advanced Engineering Materials 6 74

    [4]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Advanced engineering materials 6 299

    [5]

    Cantor B 2014 Entropy 16 4749

    [6]

    Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Materialia 281 120421

    [7]

    Liu C, Zhang L-C, Wang K, Wang L 2025 Acta Materialia 283 120526

    [8]

    Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H-T 2024 Journal of Advanced Ceramics 13 780

    [9]

    Feltrin A C, Hedman D, Akhtar F 2024 Journal of Advanced Ceramics 13 1268

    [10]

    Ren X L, Zhang W W,Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 172(in Chinese)[任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 69 172]

    [11]

    Cheng J J, Qiu X L,Li K, Zhou D,Yuan J J 2022 Acta Phys. Sin. 71 369(in Chinese)[陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 369]

    [12]

    Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310

    [13]

    Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Materialia 254 118970

    [14]

    Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82

    [15]

    Zhang M, George E P, Gibeling J C 2021 Scripta Materialia 194 113633

    [16]

    Jo M-G, Suh J-Y, Kim M-Y, Kim H-J, Jung W-S, Kim D-I, Han H N 2022 Materials Science and Engineering: A 838 142748

    [17]

    Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Materials Letters 164 344

    [18]

    Liu C-J, Gadelmeier C, Lu S-L, Yeh J-W, Yen H-W, Gorsse S, Glatzel U, Yeh A-C 2022 Acta Materialia 237 118188

    [19]

    Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Additive Manufacturing 28 766

    [20]

    Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. [OL](in Chinese)[李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 材料工程 OL] (https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002)

    [21]

    Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 Journal of Alloys and Compounds 889 161800

    [22]

    Zhang M, George E P, Gibeling J C 2021 Acta Materialia 218 117181

    [23]

    Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 Journal of Alloys and Compounds 894 162380

    [24]

    Zhou J, Liao H, Chen H, Huang A 2021 Journal of Alloys and Compounds 859 157851

    [25]

    Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 Journal of Alloys and Compounds 784 195

    [26]

    Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Materials Science and Engineering: A 918 147469

    [27]

    Zhao Y, Guo Q, Ma Z, Yu L 2020 Materials Science and Engineering: A 791 139735

    [28]

    Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Additive Manufacturing 71 103593

    [29]

    Özden M G, Freeman F S H B, Morley N A 2023 Advanced Engineering Materials 25 2300597

    [30]

    Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 Journal of Alloys and Compounds 1010 177740

    [31]

    Manzoni A M, Glatzel U 2019 Materials Characterization 147 512

    [32]

    Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746

    [33]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 Journal of Applied Physics 74 3137

    [34]

    Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aviat. Manuf. Technol. 67 14(in Chinese) [张尚洲 李子福, 王瑞, 孙广宝,刘国浩,于鸿垚2024 航空制造技术 67 14]

    [35]

    Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 Journal of Magnetism and Magnetic Materials 589 171506

    [36]

    Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1

    [37]

    Brück, E H., ed. 2017 Handbook of magnetic materials (Amsterdam: Elsevier) pp 9-11

    [38]

    Tan X, Chen L, Lv M, Peng W, Xu H 2023 Materials 16 7222

    [39]

    Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology) (in Chinese) [徐震霖 2021 博士 学位论文(马鞍山:安徽工业大学)]

    [40]

    Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24

    [41]

    Poisl W H, Oliver W C, Fabes B D 1995 Journal of Materials Research 10 2024

    [42]

    Nabarro F R N, De Villiers F 2018 Physics of creep and creep-resistant alloys (London: CRC press)pp 46-81

  • [1] 姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺. 基板温度对激光选区熔化制备铁基非晶合金晶化的影响. 物理学报, doi: 10.7498/aps.74.20240662
    [2] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, doi: 10.7498/aps.73.20241132
    [3] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, doi: 10.7498/aps.73.20231421
    [4] 史芳杰, 李南, 郭峻铭, 陈柏屹, 李飒腾, 刘浩良, 郭建业, 李乾武, 李烨飞, 肖冰. Fe-Cr二元合金微观组织演化的质量密度场耦合动力学Monte-Carlo模拟研究. 物理学报, doi: 10.7498/aps.72.20230291
    [5] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.72.20221621
    [6] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20221621
    [7] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20221368
    [8] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [9] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [10] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, doi: 10.7498/aps.69.20191671
    [11] 杨俊升, 朱子亮, 曹启龙. 预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191191
    [12] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.016106
    [13] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
    [14] 杨 森, 苏云鹏, 黄卫东, 周尧和. 激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征. 物理学报, doi: 10.7498/aps.52.81
    [15] 王敦辉, 阴津华, 唐少龙, 沈亚涛, 都有为. Gd3Al2-xGax合金的磁熵研究. 物理学报, doi: 10.7498/aps.48.116
    [16] 邵元智, 熊正烨, 张介立, 张进修. Gd二元合金纳米固体的磁热熵特性. 物理学报, doi: 10.7498/aps.45.1749
    [17] 邓文, 熊良钺, 龙期威, 王淑荷, 郭建亭. B改善单晶和多晶Ni3Al合金力学性能的微观机制. 物理学报, doi: 10.7498/aps.43.154
    [18] 陈魁英, 李庆春. 深过冷液态Mg-Ca合金的微观动力学行为. 物理学报, doi: 10.7498/aps.42.1491
    [19] 聂向富, 唐贵德, 牛秀德, 韩宝善. 三类硬磁畴的形成及静态特性. 物理学报, doi: 10.7498/aps.39.296
    [20] 陈熙琛, 管惟炎, 易孙圣, 王祖仑, 林影. 急冷Al-Si-Ge合金的微观结构及正常-超导转变特性. 物理学报, doi: 10.7498/aps.31.268
计量
  • 文章访问数:  56
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-19

/

返回文章
返回