搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选区激光熔化AlCoCrCuFeNi高熵合金的半硬磁和微观力学行为研究

胡绪照 陈翔凌 徐震霖 张电宝 刘婧 夏爱林

引用本文:
Citation:

选区激光熔化AlCoCrCuFeNi高熵合金的半硬磁和微观力学行为研究

胡绪照, 陈翔凌, 徐震霖, 张电宝, 刘婧, 夏爱林

Semi-hard magnetic and micro-mechanical behaviors of selective laser melting prepared AlCoCrCuFeNi high-entropy alloy

HU Xuzhao, CHEN Xiangling, XU Zhenlin, ZHANG Dianbao, LIU Jing, XIA Ailin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 磁性高熵合金在能量转换、磁滞电机、电磁控制机构等相关领域具有一定的应用前景. 采用选区激光熔化(SLM)成形技术在不同工艺参数下制备出AlCoCrCuFeNi高熵合金, 对合金的相组成、微观组织结构、磁性能和微观力学行为进行了系统的研究. 结果表明, SLM成形态合金主要由体心立方(BCC)基体相和少量近似球形的面心立方(FCC)纳米析出相组成, 其纳米硬度随着激光功率的增加而减小, 随着扫描速度的变化在一定范围波动, 但是整体均呈现出优异的微观力学性能, 且其纳米压痕蠕变变形机制异于传统经典蠕变理论, 主要受位错运动控制. SLM成形态合金均表现出典型的半硬磁特性, 其饱和磁化强度受SLM工艺参数影响较小, 保持在43 A·m2/kg左右; 矫顽力随着激光功率的增加从1.72 kA/m增加到2.71 kA/m, 随着扫描速度的增加从2.37 kA/m减小到1.98 kA/m. 磁性能研究表明, 该成形态AlCoCrCuFeNi高熵合金的磁性能有望广泛应用于磁控机构等领域. 本工作可为后续优化SLM高熵合金的综合磁学性能以及纳米压痕室温蠕变机制提供一定的理论基础和实实验方向.
    Magnetic high-entropy alloy (HEA) has certain application prospects in the fields of energy conversion, hysteresis motor, electromagnetic control mechanism and others. In this study, AlCoCrCuFeNi HEA is prepared by selective laser melting (SLM) with different process parameters, and the phase composition, microstructure, magnetic properties and micromechanical behavior are studied systematically. The results show that the SLMed alloy mainly consists of a BCC matrix phase with a small quantity of approximately spherical FCC precipitated nanophase. The nanohardness decreases with the increase of laser power and fluctuates in a certain range with the change of scanning speed, but the whole sample shows excellent micromechanical properties. Besides, it is found that the room-temperature nanoindentation creep deformation mechanism of AlCoCrCuFeNi HEAs is mainly controlled by dislocation motion, which is different from the results given by the traditional classical creep theory. Both of SLMed alloys exhibit typical semi-hard magnetic properties. The saturation magnetization is affected slightly by the SLM process parameters and remains at about 43 A·m2/kg because all samples have a similar quantity of ferromagnetic elements (Fe,Co and Ni). However, the coercivity increases from 1.72 to 2.71 kA/m with the increase of laser power (P), and decreases from 2.37 to 1.98 kA/m with the increase of scanning speed (v), which can be attributed to the different effects of porosity and internal stress on the pinning of domain walls under different process parameters (P and v). This work provides a theoretical basis and experimental direction for further studying the optimization of comprehensive magnetic properties and the room temperature creep mechanism of SLMed high-entropy alloy.
  • 图 1  SLM成形设备(a)、SLM工艺示意图(b)及SLM成形样品顶面实物图(c)

    Fig. 1.  SLM equipment (a), schematic diagram of the SLM process (b) and the top-view physical picture of SLMed alloys.

    图 2  SLM成形态AlCoCrCuFeNi高熵合金在不同工艺参数下的孔隙率变化

    Fig. 2.  Variation of porosity with laser power and scanning speed of the SLMed AlCoCrCuFeNi HEAs.

    图 3  不同工艺参数下制备的SLM成形态AlCoCrCuFeNi高熵合金的XRD图谱 (a) 激光扫描速率为1450 mm/s, 激光功率为110—150 W; (b) 激光功率为130 W, 激光扫描速率为1350—1550 mm/s

    Fig. 3.  The XRD spectra of SLMed samples, (a) processed at 1450 mm/s laser scanning and different laser power (110–150 W), (b) processed at 130 W laser power and different (1350–1550 mm/s) laser scanning speed, respectively.

    图 4  SLM成形态试样的典型微观结构 (a), (b) SEM形貌图; (c), (d) TEM明场像图; (e), (f) 选区电子衍射图; (g)表示位错堆积和缠结的TEM明场像图

    Fig. 4.  Typical microstructures of SLMed samples: (a), (b) SEM images; (c), (d) bright-field TEM images; (e), (f) the selective area electron diffraction; (g) TEM bright field image showing the dislocation pile up and entanglement.

    图 5  SLM成形态AlCoCrCuFeNi高熵合金在不同激光功率下的磁滞回线(a)(插图为局部放大图)和磁性参数(b)的变化规律

    Fig. 5.  Hysteresis loops (a) and variation in Ms, Hc (b) of SLMed AlCoCrCuFeNi specimens at different power, respectively. The illustration is partial enlargement of panel (a)

    图 6  SLM成形态AlCoCrCuFeNi高熵合金在不同扫描速率下的磁滞回线(a) (插图为局部放大图)和磁性参数(b)的变化规律

    Fig. 6.  Hysteresis loops (a) and the variation in Ms, Hc (b) of SLMed AlCoCrCuFeNi specimens at different scanning speed, respectively; the illustration is partial enlargement of Figure (a)

    图 7  纳米压痕实验. 不同激光扫描速度(a)和激光功率(b)条件下打印态试样的压痕深度-载荷关系曲线

    Fig. 7.  Nanoindentation test. The curves of load on surface vs. displacement into surface of printed samples with different P (a) and v (b).

    图 8  纳米压痕实验 (a)压痕深度和载荷关系曲线; (b)拟合蠕变曲线

    Fig. 8.  Nanoindentation test: (a) Curve of load on surface vs. displacement into surface; (b) fitting creep curve.

    表 1  AlCoCrCuFeNi粉末的化学成分及各元素的特征参数

    Table 1.  Chemical compositions and element-characteristic parameters of the AlCoCrCuFeNi powders.

    ElementsAlCoCrCuFeNi
    Mass fraction/%8.8518.8616.5920.2817.2518.11
    density/(g·mm–3)2.78.857.758.907.878.85
    Melting point/K93317702123135618111728
    Average atomic/nm0.14320.13630.12490.12800.12700.1240
    StructureFCCHCPBCCFCCBCCFCC
    VEC*39611810
    *VEC—valence electron concentration.
    下载: 导出CSV

    表 2  SLM制备AlCoCrCuFeNi高熵合金的工艺参数

    Table 2.  Process parameters of fabricating AlCoCrCuFeNi HEAs using SLM technique.

    工艺参数 取值
    Laser thickness (t)/μm 40
    Laser power (P)/W 110—150
    Scan velocity (v)/(mm·s–1) 1350—1550
    Hatch spacing (h)/μm 50
    下载: 导出CSV

    表 3  不同激光功率(P)下SLM成形态AlCoCrCuFeNi高熵合金的XRD参数

    Table 3.  The XRD parameters of SLMed AlCoCrCuFeNi HEAs at different laser power.

    P/W VBCC/% VFCC/% aBCC aFCC
    110 94.89 5.11 2.8709±0.0006 3.6100±0.0006
    120 94.38 5.62 2.8726±0.0017 3.6280±0.0007
    130 94.24 5.76 2.8752±0.0012 3.6289±0.0017
    140 93.41 6.59 2.8762±0.0011 3.6310±0.0023
    150 92.04 7.96 2.8763±0.0006 3.6367±0.0014
    下载: 导出CSV

    表 4  不同扫速(v)下SLM成形态AlCoCrCuFeNi高熵合金的XRD参数

    Table 4.  The XRD parameters of SLMed AlCoCrCuFeNi HEAs at different laser scanning.

    v/(mm·s–1) VBCC/% VFCC/% aBCC/(Å aFCC
    1350 94.84 5.16 2.8840±0.0029 3.6460±0.0012
    1400 94.89 5.11 2.8825±0.0012 3.6289±0.0017
    1450 93.75 6.25 2.8810±0.0034 3.6430±0.0006
    1500 94.13 5.87 2.8773±0.0015 3.6358±0.0021
    1550 93.62 6.38 2.8737±0.0009 3.6297±0.0024
    下载: 导出CSV

    表 5  不同激光功率下合金的纳米压痕参数

    Table 5.  Nanoindentation of alloys at different laser power.

    P/W Hmax /nm Nano-hardness/GPa E/GPa
    110 321.5±13.8 8.8±0.9 202.3±8.4
    120 322.4±2.1 8.7±0.2 202.5±6.7
    130 323.2±13.6 8.7±0.8 208.9±15.6
    140 326.8±6.2 8.5±0.5 201.8±2.3
    150 332.3±8.4 8.2±0.5 203.8±5.0
    下载: 导出CSV

    表 6  不同激光扫描速度下合金的纳米压痕参数

    Table 6.  Nanoindentation of alloys at different laser scanning speed.

    v/(mm·s–1) Hmax /nm Nano-hardness/GPa E/GPa
    1350 331.0±6.3 8.2±0.4 199.2±10.9
    1400 323.2±13.6 8.7±0.8 208.9±15.6
    1450 322.3±3.8 8.8±0.2 201.7±8.6
    1500 338.7±8.5 7.7±0.4 197.0±7.7
    1550 332.3±8.4 8.1±0.5 193.3±5.0
    下载: 导出CSV
  • [1]

    严密, 彭晓领 2019 磁学基础与磁性材料 (杭州: 浙江大学出版社)第184页

    Yan M, Peng X L 2019 Foudamentals of Magnetics and Magnetic Materials (Hangzhou: Zhejiang University Press) p184

    [2]

    Borkar T, Gwalani B, Choudhuri D, Mikler C V, Yannetta C J, Chen X, Ramanujan R V, Styles M J, Gibson M A, Banerjee R 2016 Acta Mater. 116 63Google Scholar

    [3]

    Huang P K, Yeh J W, Shun T T, Chen S K 2004 Adv. Eng. Mater. 6 74Google Scholar

    [4]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [5]

    Cantor B 2014 Entropy 16 4749Google Scholar

    [6]

    Taheriniya S, Sonkusare R, Boll T, Divinski S V, Peterlechner M, Rösner H, Wilde G 2024 Acta Mater. 281 120421Google Scholar

    [7]

    Liu C, Zhang L C, Wang K, Wang L 2025 Acta Mater. 283 120526Google Scholar

    [8]

    Liu Y, Liang J, Guo W, Sun S, Tian Y, Lin H T 2024 J. Adv. Ceram. 13 780Google Scholar

    [9]

    Feltrin A C, Hedman D, Akhtar F 2024 J. Adv. Ceram. 13 1268Google Scholar

    [10]

    任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 67 046102Google Scholar

    Ren X L, Zhang W W, Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin. 67 046102Google Scholar

    [11]

    陈晶晶, 邱小林, 李柯, 周丹, 袁军军 2022 物理学报 71 199601Google Scholar

    Cheng J J, Qiu X L, Li K, Zhou D, Yuan J J 2022 Acta Phys. Sin. 71 199601Google Scholar

    [12]

    Han L, Maccari F, Souza Filho I R, Peter N J, Wei Y, Gault B, Gutfleisch O, Li Z, Raabe D 2022 Nature 608 310Google Scholar

    [13]

    Li Z, Zhang Z, Liu X, Li H, Zhang E, Bai G, Xu H, Liu X, Zhang X 2023 Acta Mater. 254 118970Google Scholar

    [14]

    Yu P F, Zhang L J, Cheng H, Zhang H, Ma M Z, Li Y C, Li G, Liaw P K, Liu R P 2016 Intermetallics 70 82Google Scholar

    [15]

    Zhang M, George E P, Gibeling J C 2021 Scr. Mater. 194 113633Google Scholar

    [16]

    Jo M G, Suh J Y, Kim M Y, Kim H J, Jung W S, Kim D I, Han H N 2022 Mater. Sci. Eng. , A 838 142748Google Scholar

    [17]

    Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H 2016 Mater. Lett. 164 344Google Scholar

    [18]

    Liu C J, Gadelmeier C, Lu S L, Yeh J W, Yen H W, Gorsse S, Glatzel U, Yeh A C 2022 Acta Mater. 237 118188Google Scholar

    [19]

    Xu Z, Zhang H, Li W, Mao A, Wang L, Song G, He Y 2019 Addit. Manuf. 28 766

    [20]

    https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002 [Li J, Zhao K, Li B, Zhao Y, Guo H, Han S Y 2024 J. Mater. Eng. [OL] [李军, 赵锴, 李波, 赵宇, 郭欢, 韩思远 2024 材料工程OL]]

    (https://link.cnki.net/urlid/11.1800.TB.20240918.1046.002

    [21]

    Wu S, Qiao D, Zhao H, Wang J, Lu Y 2021 J. Alloys Compds. 889 161800Google Scholar

    [22]

    Zhang M, George E P, Gibeling J C 2021 Acta Mater. 218 117181Google Scholar

    [23]

    Miao J, Yao H, Wang J, Lu Y, Wang T, Li T 2022 J. Alloys Compds. 894 162380Google Scholar

    [24]

    Zhou J, Liao H, Chen H, Huang A 2021 J. Alloys Compds. 859 157851Google Scholar

    [25]

    Karlsson D, Marshal A, Johansson F, Schuisky M, Sahlberg M, Schneider J M, Jansson U 2019 J. Alloys Compds. 784 195Google Scholar

    [26]

    Yu Y, Zhao Y, Feng K, Chen R, Han B, Ji K, Qin M, Li Z, Ramamurty U 2024 Mater. Sci. Eng. , A 918 147469Google Scholar

    [27]

    Zhao Y, Guo Q, Ma Z, Yu L 2020 Mater. Sci. Eng. , A 791 139735Google Scholar

    [28]

    Song X, Liaw P K, Wei Z, Liu Z, Zhang Y 2023 Addit. Manuf. 71 103593

    [29]

    Özden M G, Freeman F S H B, Morley N A 2023 Adv. Eng. Mater. 25 2300597Google Scholar

    [30]

    Hu X, Xu Z, Jia X, Li S, Zhu Y, Xia A 2025 J. Alloys Compds. 1010 177740Google Scholar

    [31]

    Manzoni A M, Glatzel U 2019 Mater. Charact. 147 512Google Scholar

    [32]

    Wang Y, Li R, Niu P, Zhang Z, Yuan T, Yuan J, Li K 2020 Intermetallics 120 106746Google Scholar

    [33]

    Allia P, Baricco M, Tiberto P, Vinai F 1993 J. Appl. Phys. 74 3137Google Scholar

    [34]

    张尚洲, 李子福, 王瑞, 孙广宝, 刘国浩, 于鸿垚 2024 航空制造技术 67 14

    Zhang S Z, Li Z F, Wang R, Sun G B, Liu G H, Yu H Y 2024 Aeronaut. Manuf. Technol. 67 14

    [35]

    Oboz M, Zajdel P, Zubko M, Świec P, Szubka M, Kądziołka-Gaweł M, Maximenko A, Trump B A, Yakovenko A A 2024 J. Magn. Magn. Mater. 589 171506Google Scholar

    [36]

    Uporov S, Bykov V, Pryanichnikov S, Shubin A, Uporova N 2017 Intermetallics 83 1Google Scholar

    [37]

    Brück E H. , ed. 2017 Handbook of magnetic materials (Amsterdam: Elsevier) pp 9–11

    [38]

    Tan X, Chen L, Lü M, Peng W, Xu H 2023 Materials 16 7222Google Scholar

    [39]

    徐震霖 2021 博士 学位论文(马鞍山: 安徽工业大学)

    Xu Z L 2021 Ph. D. Dissertation (Ma Anshan: Anhui University of Technology

    [40]

    Niu P D, Li R D, Yuan T C, Zhu S Y, Chen C, Wang M B, Huang L 2019 Intermetallics 104 24Google Scholar

    [41]

    Poisl W H, Oliver W C, Fabes B D 1995 J. Mater. Res. 10 2024Google Scholar

    [42]

    Nabarro F R N, De Villiers F 2018 Physics of creep and creep-resistant alloys (London: CRC press)pp 46–81

  • [1] 伯乐, 高小余, 宁志良, 王力, 孙剑飞, 张振江, 黄永江. 电流处理调控CoCrFeNi高熵合金纤维的组织结构与力学性能. 物理学报, doi: 10.7498/aps.74.20250518
    [2] 姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺. 基板温度对激光选区熔化制备铁基非晶合金晶化的影响. 物理学报, doi: 10.7498/aps.74.20240662
    [3] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, doi: 10.7498/aps.73.20241132
    [4] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, doi: 10.7498/aps.73.20231421
    [5] 史芳杰, 李南, 郭峻铭, 陈柏屹, 李飒腾, 刘浩良, 郭建业, 李乾武, 李烨飞, 肖冰. Fe-Cr二元合金微观组织演化的质量密度场耦合动力学Monte-Carlo模拟研究. 物理学报, doi: 10.7498/aps.72.20230291
    [6] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20221621
    [7] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20221368
    [8] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, doi: 10.7498/aps.71.20220733
    [9] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [10] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, doi: 10.7498/aps.69.20191671
    [11] 杨俊升, 朱子亮, 曹启龙. 预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20191191
    [12] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.016106
    [13] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究. 物理学报, doi: 10.7498/aps.62.146401
    [14] 田惠忱, 刘丽, 文玉华. 立方铂纳米粒子的形状变化与熔化特性的分子动力学研究. 物理学报, doi: 10.7498/aps.58.4080
    [15] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, doi: 10.7498/aps.54.4395
    [16] 杨 森, 苏云鹏, 黄卫东, 周尧和. 激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征. 物理学报, doi: 10.7498/aps.52.81
    [17] 邵元智, 熊正烨, 张介立, 张进修. Gd二元合金纳米固体的磁热熵特性. 物理学报, doi: 10.7498/aps.45.1749
    [18] 邓文, 熊良钺, 龙期威, 王淑荷, 郭建亭. B改善单晶和多晶Ni3Al合金力学性能的微观机制. 物理学报, doi: 10.7498/aps.43.154
    [19] 陈魁英, 李庆春. 深过冷液态Mg-Ca合金的微观动力学行为. 物理学报, doi: 10.7498/aps.42.1491
    [20] 聂向富, 唐贵德, 牛秀德, 韩宝善. 三类硬磁畴的形成及静态特性. 物理学报, doi: 10.7498/aps.39.296
计量
  • 文章访问数:  272
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-06
  • 修回日期:  2025-04-08
  • 上网日期:  2025-04-19

/

返回文章
返回