搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的SF6替代气体绝缘强度预测研究

刘伟 凌梦旋 廖红 林涛 吴文婷 程龙玖

引用本文:
Citation:

基于机器学习的SF6替代气体绝缘强度预测研究

刘伟, 凌梦旋, 廖红, 林涛, 吴文婷, 程龙玖

Prediction of the Dielectric Strength for SF6 Replacement Gases Based on Machine Learning

LIU Wei, LING Mengxuan, LIAO Hong, LIN Tao, WU wenting, CHENG Longjiu
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 绝缘强度(Er)是筛选和评估六氟化硫(SF6)替代气体的关键指标。本研究基于机器学习方法,构建了SF6替代气体的Er预测模型。首先,收集了88个气体分子相对SF6Er数据并计算了这些分子的全局参数和静电势参数,并将其作为描述符。采用5种经过五折交叉验证和超参数优化后的机器学习方法,在Er数据及描述符之间建立Er预测模型。研究表明,自适应增强回归模型表现突出,其决定系数达到了0.90,平均绝对误差和均方根误差分别为0.17和0.18。结合Shapley加性解释量化了描述符特征对Er的贡献,发现极化率是影响Er的主要因素。最后,利用SF6及已知的六种环保替代气体对自适应增强回归模型的Er进行了验证,其绝对误差均在0.02-0.33之间,进一步证实了该模型的可靠性。本研究有望为筛选SF6替代气体提供一种可行的路径。
    Dielectric strength (Er) is a critical factor in screening and evaluating for SF6 replacement gas. The conventional experimental methods for measuring Er are not only exceptionally time-consuming but also prohibitively expensive. This work constructed an Er prediction model for SF6 replacement gases based on machine learning methods. First, an exhaustive literature survey is performed to collect 88 high-quality experimental Er values. Second, a total of 32 insightful microscopic descriptors are accurately calculated for each compound based on density functional theory, including both global parameters and molecular electrostatic potential parameters. Furthermore, five state-of-the-art machine learning algorithms, which have been carefully modified based on five-fold cross-validation and hyperparameter optimization, are utilized to train and test the 88 experimental Er data and their relevant microscopic descriptors. Finally, the result reveals that Ada Boost regression model demonstrates superior predictive performance with a coefficient of determination of 0.90, a mean absolute error of 0.17, and a root mean square error of 0.18. Moreover, Shapley Additive exPlanations analysis is used to reveal the correlation between the microscopic descriptors and Er. The results indicate that polarizability emerges as the predominant factor significantly affecting Er, which accounts for as high as 17.3%, followed by the molecular weight (14.1%). Specifically, molecules with high α are more prone to deformation under the action of an electric field, and their electron clouds are more likely to be polarized, which has a positive correlation with Er. There is an approximately positive correlation between the molecular weight and the Er of gases. To confirm the reliability of Ada Boost regression model for Er prediction, the Er of SF6 and six known environmentally friendly replacement gases were tested within an absolute error of 0.02-0.33. This study provides a feasible pathway to accelerate the search for SF6 replacement gases.
  • [1]

    Pan B, Wang G, Shi H, Shen J, Ji H K, Kil G S 2020 Appl. Sci. 10 2526.

    [2]

    Cui Z, Yi L, Song X, Tian S S, Tang J, Hao Y P 2024 Sci. Total Environ 906 167347.

    [3]

    Gao K L, Yang Y, Zhou W J, Wang B S, Ding W D, Lin X, Yan X L, Zhang B Y, Wang D B, Xiao S 2024 CSEE J. Power energy 44 7395 (in Chinese) [高克利,杨圆,周文俊,王宝山,丁卫东,张晓星,林莘,颜湘莲,张博雅,王邸博,肖淞 2024 中国电机工程学报 44 7395]

    [4]

    Ma T, Wang Q G, Wang W M 2025 Low Temperature and Specialty Gases 43 1. (in Chinese) [马腾,王泉高,王伟民 2025 低温与特气 43 1]

    [5]

    Liu W, Dong W C, Song Y M, Zhao Y H, Wu P P, Huang X, Wang K, Cheng L J 2023 Int. J. Quantum Chem. 123, e27114.

    [6]

    Zhang X X, Li Y, Xiao S, Tang J. 2017 Environ. Sci. Technol. 51, 10127.

    [7]

    Li Y, Pang Z Y, Zheng H B 2024 IEEE Trans. Dielectr. Electr. Insul. 31 297.

    [8]

    Chen K, Lin X, Xu J Y, Xiong W, Song H F 2024 High Volt. 60 99. (in Chinese) [陈凯,林莘,徐建源,熊玮,宋会发 2024 高压电器 60 99]

    [9]

    Long Y X, Guo L P, Shen Z Y 2019 High Voltage 45 1064 (in Chinese) [龙云翔,郭立平,沈震宇,陈成,周文俊,刘伟 2019 高电压技术 45 1064]

    [10]

    Liu Y J, Ren M, Wang K 2025 High Voltage 51 1206 (in Chinese) [柳玉洁,任明,王凯,陈旭,王腾腾,董明 2025 高电压技术 51 1206]

    [11]

    Yang Z Q, Zeng J J, Ma Y D, Wei T, Zhao B, Liu Y Z, Zhang W, Lv J, Li X W, Zhang B Y, Tang N, Li L, Sun D W 2023 Chem. Ind. Eng. Prog. 42 4093 (in Chinese) [杨志强,曾纪珺,马义丁,尉涛,赵波,刘英哲,张伟,吕剑,李兴文,张博雅,唐念,李丽,孙东伟 2023 化工进展 42 4093]

    [12]

    Yu X J, Hou H, Wang B S 2017 J. Comput. Chem. 38 721

    [13]

    Brand K P 1982 IEEE Trans. Electr. Insul. 17 451

    [14]

    Zhang B Y, Chen L, Li X W, Guo Z, Pu Y J, Tang N 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1187

    [15]

    Meurice N, Sandre E, Aslanides A, Vercauteren D P 2004 IEEE Trans. Dielectr. Electr. Insul. 11 946

    [16]

    Zhang C H, Shi H X, Cheng L, Zhao K, Xie X Y, Ma H B 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2572.

    [17]

    Heng P P, Zhang M, Hou H, Wang B S 2024 Chem. J. Chinese U. 45 61 (in Chinese) [衡盼盼,张咪,侯华,王宝山 2024 高等学校化学学报 45 61]

    [18]

    Liu G P, Yang S, Zhang N N, Wang H, Xiao J X 2022 High Voltage 48 2208 (in Chinese) [刘关平,杨帅,张闹闹,王航,肖集雄 2022 高电压技术 48 2208]

    [19]

    Zhou W J, Qiu R, Gao K L, Zheng Y, Hou H, Wang B S, Luo Y B, Yu J H 2023 High Voltage 49 895 (in Chinese) [周文俊,邱睿,高克利,郑宇,侯华,王宝山,罗运柏,喻剑辉 2023 高电压技术 49 895]

    [20]

    Zhao Q L, Tong D J, Tu Y P, Zheng Z, Qiu X Y, Wang C 2024 IEEE Trans. Dielectr. Electr. Insul. 30 49

    [21]

    Li H M, Zhao S, Xiao D M 2024 IEEE Trans. Dielectr. Electr. Insul. 31 2013

    [22]

    Zhang M, Hou H, Wang B S 2023 High Voltage 9 484-494.

    [23]

    Rabie M, Dahl D A, Donald S M A, Reiher M, Franck C M 2013 IEEE Trans. Dielectr. Electr. Insul. 20 856.

    [24]

    Sun H, Liang L Q, Wang C L, Wu L, Yang F, Rong M Z 2020 IEEE Access 8 124204

    [25]

    Zhao G B, Kim H W, Yang C W, Chung Y G 2024 J. Phys. Chem. A 128 2399

    [26]

    Liu W, Zha J W, Ling M X, Li D, Shen K D, Cheng L J 2024 Chem. Phys. 588 112447.

    [27]

    Štrumbelj E, Kononenko I 2014 Knowledge and Information Systems 41 647

    [28]

    Zhang Q, Zheng Y J, Sun W B, Ou Z P, Odunmbaku O, Li M, Chen S S, Zhou Y L, Li J, Qin B, Sun K 2022 Adv. Sci. 9 6 2104742.

    [29]

    Luo H R, Gou Q Z, Zheng Y J, Wang K X, Yuan R D, Zhang S D, Fang W, Luogu Z, Hu Y Z, Mei H, Song B, Sun K, Wang J. Li M 2025 ACS Nano 19 2 2427-2443.

    [30]

    Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 7 (in Chinese) [张桥,谭薇,宁勇祺,聂国政,蔡孟秋,王俊年,朱慧平,赵宇清 2024 物理学报, ,73 7]

    [31]

    Li X W, Zhao H, Murphy A 2018 J. Phys. D. Appl. Phys. 51 153001

    [32]

    Meurice N, Sandre E, Aslanides A, Vercauteren D P 2004 IEEE Trans. Dielectr. Electr. Insul. 11 946

    [33]

    Yang S, Wu S B, Chen H 2024 Comput. Theor. Chem. 1238 114680

    [34]

    Wu S B, Yang S, Chen H 2024 J. Mol. Model 30 413

    [35]

    Lu T, Chen F. W. 2012 J. Mol. Graph. Model. 38, 314-323

    [36]

    Lu T, Chen F J 2012 Comput. Chem. 33 580

    [37]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33

    [38]

    Gillet A, Cher S, Tassé M, Blon T, Alves S, Izzet G, Chaudret B, Proust. A, Demont P, Volatron F, Tricard S 2021 Nanoscale Horiz. 6 271

    [39]

    Vijh A K 1982 IEEE Trans. Dielectr. Electr. Insul. EI-17 84

  • [1] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [2] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [3] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [4] 张孙成, 韩同伟, 王如盟, 杨艳陶, 张小燕. 基于机器学习的菱形穿孔石墨烯负泊松比效应预测与优化. 物理学报, doi: 10.7498/aps.74.20241624
    [5] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性. 物理学报, doi: 10.7498/aps.74.20250362
    [6] 吴阳海, 杜海龙, 薛雷, 李佳鲜, 薛淼, 郑国尧. 基于机器学习的托卡马克偏滤器靶板热负荷预测研究. 物理学报, doi: 10.7498/aps.74.20250381
    [7] 刘兆圣, 张桥, 宁勇祺, 符秀交, 邹代峰, 王俊年, 赵宇清. 基于机器学习与第一性原理计算的高居里温度Janus预测. 物理学报, doi: 10.7498/aps.74.20251026
    [8] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [9] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [10] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, doi: 10.7498/aps.73.20240284
    [11] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, doi: 10.7498/aps.73.20241278
    [12] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [13] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [14] 杨章章, 刘丽, 万致涛, 付佳, 樊群超, 谢锋, 张燚, 马杰. 结合机器学习算法提高从头算方法对HF/HBr/H35Cl/Na35Cl振动能谱的预测性能. 物理学报, doi: 10.7498/aps.72.20221953
    [15] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [16] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, doi: 10.7498/aps.71.20211625
    [17] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [18] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [19] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, doi: 10.7498/aps.62.083101
    [20] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用. 物理学报, doi: 10.7498/aps.60.073103
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回