搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦离子注入4H-SiC晶体的纳米硬度研究

张勇 张崇宏 周丽宏 李炳生 杨义涛

引用本文:
Citation:

氦离子注入4H-SiC晶体的纳米硬度研究

张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛

Study on nanohardness of helium-implanted 4H-SiC

Zhang Yong, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Yang Yi-Tao
PDF
导出引用
  • 4H-SiC晶体经能量为100 keV,剂量为3×1016 cm-2的氦离子高温(500 K)注入后,再在773—1273 K温度范围内进行了退火处理,最后使用纳米压痕仪测量了样品注入面的硬度.测试结果表明,在500—1273 K温度范围内样品的硬度随退火温度升高呈现先增大后减小再增大的趋势,其中773 K退火样品的硬度增大明显.分析认为,退火样品的硬度变化是由退火过程中缺陷复合与氦泡生长导致样品内部的Si—C键密度、键长和键角改变引起的.
    The hardness of 4H-SiC, which was high-temperature (500 K) helium-implanted to fluences of 3×1016 ions cm-2 and subsequently thermally annealed at the temperature ranging from 773 to 1273 K, was studied by nanoindentation. It is found that the hardness of the implanted 4H-SiC increases at the first, then decreases, and then increases again with increasing annealing tempeature in the temperature range of 500—1273 K, and significant increase in hardness is observed at 773 K. The behavior is ascribed to the changes of the density, length, and tangling of the covalent Si—C bond through the recombination of point defects, clustering of He-vacancy, and growth of helium bubbles during the thermal annealing.
    • 基金项目: 国家自然科学基金(批准号:10575124)资助的课题.
    [1]

    [1] Song J X, Yang Y T, Liu H X, Zhang Z Y 2008 Acta Phys. Sin. 58 4883 (in Chinese) [宋久旭、杨银堂、刘红霞、张志勇 2008 物理学报 58 4883]

    [2]

    [2]Weber W J, Yu N, Wang L M 1998 Mater. Sci. Eng. A 253 62

    [3]

    [3]Ziegler J F, Biersack J P, Littmar U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)Vol 1

    [4]

    [4]Wang C L 2007 M. S. Thesis (Shanghai: Shanghai Research Institute of Materials) (in Chinese) [王春亮 2007 硕士学位论文 (上海:上海材料研究所)]

    [5]

    [5]Tromas C, Audurier V, Leclerc S, Beaufort M F, Declemy A, Barbot J F 2008 Nucl. Instr. Meth. Phys. Res.B 266 2776

    [6]

    [6]Nix W D, Gao H J 1998 J. Mech. Phys. Solids 46 411

    [7]

    [7]Zhang C H, Donnelly S E, Vishnyakov V M, Evans J H 2003 J. Appl. Phys. 94 6017

    [8]

    [8]Sasaki K, Maruyama T, Iseki T 1989 J. Nucl. Mater. 168 349

    [9]

    [9]Zhang C H, Donnelly S E, Vishnyakov V M, Evans J H, Shibayama T, Sun Y M 2004 Nucl. Instr. Meth. Phys. Res. B 218 53

    [10]

    ]Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [11]

    ]Gao F, Weber W J 2004 Phys. Rev. B 69 224108

    [12]

    ]Corelli J C, Hoole J, Lazzaro J, Lee C W 1983 J. Am. Ceram. Soc. 66 529

    [13]

    ]Snead L L, Scholz R, Hasegawa A, Frias Rebelo A 2002 J. Nucl. Mater. 307—311 1141

    [14]

    ]Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703 (in Chinese) [王海燕、祝文军、宋振飞、刘绍军、陈向荣、贺红亮 2008 物理学报 57 3703]

    [15]

    ]Hong J, Ye Y Z 1965 Acta Phys. Sin. 21 1968 (in Chinese) [洪晶、叶以正 1965 物理学报 21 1968]

    [16]

    ]Loomis B A, Smith D L 1986 J. Nucl. Mater. 141—143 617

    [17]

    ]Hasegawa A, Oliver B M, Nogami S, Abe K, Jones R H 2000 J. Nucl. Mater. 283 811

    [18]

    ]Hojou K, Furuno S, Kushita K N, Otsu H, Furuya Y, Lzui K 1996 Nucl. Instr. Meth. Phys. Res. B 116 382

    [19]

    ]Sasaki K, Maruyama T, Iseki T 1989 J. Nucl. Mater. 179 407

    [20]

    ]Snead L L, Katoh Y, Connery S 2007 J. Nucl. Mater. 367—370 677

    [21]

    ]Itoh H, Hayakawa N, Nashiyama I 1989 J. Appl. Phys. 66 4529

    [22]

    ]Kawasuso A, Itoh H, Cha D 1998 Appl. Phys. A 67 209

  • [1]

    [1] Song J X, Yang Y T, Liu H X, Zhang Z Y 2008 Acta Phys. Sin. 58 4883 (in Chinese) [宋久旭、杨银堂、刘红霞、张志勇 2008 物理学报 58 4883]

    [2]

    [2]Weber W J, Yu N, Wang L M 1998 Mater. Sci. Eng. A 253 62

    [3]

    [3]Ziegler J F, Biersack J P, Littmar U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)Vol 1

    [4]

    [4]Wang C L 2007 M. S. Thesis (Shanghai: Shanghai Research Institute of Materials) (in Chinese) [王春亮 2007 硕士学位论文 (上海:上海材料研究所)]

    [5]

    [5]Tromas C, Audurier V, Leclerc S, Beaufort M F, Declemy A, Barbot J F 2008 Nucl. Instr. Meth. Phys. Res.B 266 2776

    [6]

    [6]Nix W D, Gao H J 1998 J. Mech. Phys. Solids 46 411

    [7]

    [7]Zhang C H, Donnelly S E, Vishnyakov V M, Evans J H 2003 J. Appl. Phys. 94 6017

    [8]

    [8]Sasaki K, Maruyama T, Iseki T 1989 J. Nucl. Mater. 168 349

    [9]

    [9]Zhang C H, Donnelly S E, Vishnyakov V M, Evans J H, Shibayama T, Sun Y M 2004 Nucl. Instr. Meth. Phys. Res. B 218 53

    [10]

    ]Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [11]

    ]Gao F, Weber W J 2004 Phys. Rev. B 69 224108

    [12]

    ]Corelli J C, Hoole J, Lazzaro J, Lee C W 1983 J. Am. Ceram. Soc. 66 529

    [13]

    ]Snead L L, Scholz R, Hasegawa A, Frias Rebelo A 2002 J. Nucl. Mater. 307—311 1141

    [14]

    ]Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703 (in Chinese) [王海燕、祝文军、宋振飞、刘绍军、陈向荣、贺红亮 2008 物理学报 57 3703]

    [15]

    ]Hong J, Ye Y Z 1965 Acta Phys. Sin. 21 1968 (in Chinese) [洪晶、叶以正 1965 物理学报 21 1968]

    [16]

    ]Loomis B A, Smith D L 1986 J. Nucl. Mater. 141—143 617

    [17]

    ]Hasegawa A, Oliver B M, Nogami S, Abe K, Jones R H 2000 J. Nucl. Mater. 283 811

    [18]

    ]Hojou K, Furuno S, Kushita K N, Otsu H, Furuya Y, Lzui K 1996 Nucl. Instr. Meth. Phys. Res. B 116 382

    [19]

    ]Sasaki K, Maruyama T, Iseki T 1989 J. Nucl. Mater. 179 407

    [20]

    ]Snead L L, Katoh Y, Connery S 2007 J. Nucl. Mater. 367—370 677

    [21]

    ]Itoh H, Hayakawa N, Nashiyama I 1989 J. Appl. Phys. 66 4529

    [22]

    ]Kawasuso A, Itoh H, Cha D 1998 Appl. Phys. A 67 209

  • [1] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [2] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟. 物理学报, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究. 物理学报, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] 黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁. Al掺杂6H-SiC的磁性研究与理论计算. 物理学报, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [5] 郭洪燕, 夏敏, 燕青芝, 郭立平, 陈济红, 葛昌纯. 中能高浓度氦离子注入对钨微观结构的影响. 物理学报, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [6] 梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺. 温度及深度对钛中氦泡释放过程影响的分子动力学研究. 物理学报, 2015, 64(4): 046103. doi: 10.7498/aps.64.046103
    [7] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [8] 杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋. He离子辐照6H-SiC引入缺陷的光谱研究. 物理学报, 2014, 63(21): 216101. doi: 10.7498/aps.63.216101
    [9] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响. 物理学报, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [10] 安涛, 文懋, 田宏伟, 王丽丽, 宋立军, 郑伟涛. TiN薄膜在纳米压痕和纳米划痕下的断裂行为. 物理学报, 2013, 62(13): 136201. doi: 10.7498/aps.62.136201
    [11] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊. 氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi: 10.7498/aps.61.176802
    [12] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [13] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [14] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟. 物理学报, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [15] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [16] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [17] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究. 物理学报, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [18] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [19] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [20] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
计量
  • 文章访问数:  5916
  • PDF下载量:  846
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-20
  • 修回日期:  2009-10-29
  • 刊出日期:  2010-03-05

氦离子注入4H-SiC晶体的纳米硬度研究

  • 1. (1)中国科学院近代物理研究所,兰州 730000; (2)中国科学院近代物理研究所,兰州 730000;中国科学院研究生院,北京 100049
    基金项目: 国家自然科学基金(批准号:10575124)资助的课题.

摘要: 4H-SiC晶体经能量为100 keV,剂量为3×1016 cm-2的氦离子高温(500 K)注入后,再在773—1273 K温度范围内进行了退火处理,最后使用纳米压痕仪测量了样品注入面的硬度.测试结果表明,在500—1273 K温度范围内样品的硬度随退火温度升高呈现先增大后减小再增大的趋势,其中773 K退火样品的硬度增大明显.分析认为,退火样品的硬度变化是由退火过程中缺陷复合与氦泡生长导致样品内部的Si—C键密度、键长和键角改变引起的.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回