搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高密度玻璃的多形性高压相变和物态方程研究

刘勋 周显明 李俊 李加波 操秀霞

引用本文:
Citation:

一种高密度玻璃的多形性高压相变和物态方程研究

刘勋, 周显明, 李俊, 李加波, 操秀霞

Shock induced polymorphism phase transitions in high density glass

Liu Xun, Zhou Xian-Ming, Li Jun, Li Jia-Bo, Cao Xiu-Xia
PDF
导出引用
  • 在二级轻气炮上用无氧铜飞片直接撞击重玻璃平板样品(密度为4.817 g/cm3,材料牌号:ZF6)开展了冲击压缩实验研究,压力范围为52.1—167.8 GPa,并采用多通道瞬态辐射高温计和光分析技术测量了其雨贡纽线、高压声速和冲击波温度等动态特性.实验结果显示,上述性质在三个不同压力区间出现不连续性变化,表明冲击压缩下该样品材料存在多形性高压相变,相变起始压力分别为23,78和120 GPa.实测声速先是随冲击压力的增高而增加,并在78 GPa附近出现急剧下降,之后又随压力增长,并在120 GPa之后下降到体波声速,表明材料进入高压熔化相.温度数据同样在78和120 GPa处出现明显的不连续变化,并在120 GPa之后变化趋于平缓与计算的Lindeman熔化线相符,进一步印证了上述相变行为.实测雨贡纽数据与LASL数据库中的重玻璃数据相符,结果显示除23 GPa附近有一明显的突变外,高压区数据几近线性变化,表明重玻璃的两个高压相变均为二级相变.本文报道的重玻璃材料高压物性数据和序列相变认识对于发展反向加载技术、提高材料声速测量精度和适用压力范围具有实用价值.
    Plate impact experiments are conducted on high density glass (HDG) with an initial density of ~4.817g/cm3 (Brand ZF6) at a two-stage light gas gun facility. A copper flyer plate is used as a standard sample. Experimental shock pressure is between 52.1GPa and 167.8GPa. A multi-wavelength pyrometer and optical analyzer technique are used to determine the Hugoniot curve, sound velocity and shock temperature of HDG. The experiment results reveal that polymorphism phase transitions occur in HDG under compression, and the onset pressures are ~23, ~78 and ~120GPa, respectively. The measured sound velocity first increases and arrives at about 78GPa, then decreases rapidly, and increases again with pressure increasing. Beyond ~120 GPa, the longitudinal sound velocity turns in to bulk sound velocity, indicating the melting of HDG. Measured shock temperatures also show discontinuities at ~78 and ~120GPa, after which its increase rate becomes small and consistent with the calculated Lindemann melting line, confirming the above HDG phase transformation behaviors. Our Hugoniot data are consistent well with LASL shock Hugoniot data of HDG, which shows discontinuity only at about 23GPa, indicating that the phase transitions at 78 and 120GPa are not first-order ones. Our shock data and the gained knowledge of dynamic response behavior of HDG are valuable for improving the accuracies in sound velocity measurements for metals and non-metals at pressures over a megabar range.
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号:2008B0101001)资助的课题.
    [1]

    Yu Y Y, Tan H, Hu J B, Dai C D 2008 Chin. Phys. B 17 264

    [2]

    Peng J X, Jing F Q, Wang L L, Li D H 2005 Acta Phys. Sin. 54 2194 (in Chinese) [彭建祥、经福谦、王礼立、李大红 2005 物理学报 54 2194]

    [3]

    Wang Y G, Chen D P, He H L, Wang L L, Jing F Q 2006 Acta Phys. Sin. 55 4202 (in Chinese) [王永刚、陈登平、贺宏亮、王礼立、经福谦 2006 物理学报 55 4202]

    [4]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese) [俞宇颖、谭 华、胡建波、戴诚达、陈大年、王焕然 2008 物理学报 57 2352]

    [5]

    Hu J B, Yu Y Y, Dai C D, Tan H 2005 Acta Phys. Sin. 54 5750 (in Chinese) [胡建波、俞宇颖、戴诚达、谭 华 2005 物理学报 54 5750]

    [6]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p148 (in Chinese) [谭 华 2006 实验冲击波物理导引(北京:国防工业出版社)第148页]

    [7]

    Hu J B, Zhou X M, Tan H 2008 Acta Phys. Sin. 57 2347 (in Chinese) [胡建波、周显明、谭 华 2008 物理学报 57 2347]

    [8]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [9]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [10]

    Santamara P D, Ross M, Errandonea D, Mukherjee G D, Mezouar M, Boehler R 2009 J. Chem. Phys. 130 124509

    [11]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B 77 024103

    [12]

    Hixson R S, Boness D A, Shaner J W, Moriarty J A 1989 Phys. Rev. Lett. 62 637

    [13]

    McQueen R G, Hopson J W, Fritz J N 1982 Rev. Sci. Instrum. 53 1982 245

    [14]

    Alexander C S, Chhabildas L C, Reinhart W D, Templeton D W 2008 Int. J. Impact Eng. 35 1376

    [15]

    McQueen R G, Fritz J N, Morris C E 1984 Shock Wave in Condensed Matter (1983) (Amsterdam: Elsevier Science) p95

    [16]

    Brown J M, Shaner J W 1984 Shock Wave in Condensed Matter (1983) (Amsterdam: Elsevier Science) p91

    [17]

    Millett J C F, Bourne N K, Rosenberg Z 2000 J. Appl. Phys. 87 8457

    [18]

    Bourne N K, Millett J C F 2001 J. Appl. Phys. 89 5368

    [19]

    Mattsson A E 2004 Shock Compression of Condensed Matter (2003) (America institute of physics) 743

    [20]

    Carter W J 1973 High Temp.-High Press. 5 316

    [21]

    Hayes D, Hixson R S, McQueen R G 2000 Shock Compression of Condensed Matter (1999) (America institute of physics) 483

    [22]

    Meyers M A 1994 Dynamic behavior of materials (New York: Wiley-interscience) p101

    [23]

    McQueen R G, March S P, Taylor J W, Fritz J N, Carter W J 1970 High Velocity Impact Phenomena (New York:Academic) p312

    [24]

    Boslough M B, Ahrens T J 1989 Rev. Sci. Instrum. 60 3711

    [25]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press) p392

    [26]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese) [李 俊、周显明、李加波、李赛男、祝文军、王 翔、经福谦 2007 物理学报 56 6557]

    [27]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) P213,384 (in Chinese) [经福谦 1999 实验物态方程导引 (北京:科学出版社)] 第213—384页

    [28]

    Heinz D L, Jeanloz R 1984 Phys. Rev. B 30 6045

    [29]

    Akins J A, Ahrens T J 2002 J. Geophys. Lett. 29 101394

    [30]

    Smart R M, Glasser F P 1974 J. Am. Ceram. Soc. 57 378

    [31]

    Furukawa Toshihharu, Brawer S A, White W B 1979 J. Am. Ceram. Soc. 62 351

    [32]

    Nellis W J, Yoo C S 1983 J. Geophys. Res. 95 21749

    [33]

    Prakapenka V P, Shen Guoyin, Dubrovinsky L S, Rivers M L, Sutton S R 2004 J. Phys. Chem. Solids 65 1537

    [34]

    Lyzenga G A, Ahrens T J 1983 J. Geophys. Res. 88 2431

  • [1]

    Yu Y Y, Tan H, Hu J B, Dai C D 2008 Chin. Phys. B 17 264

    [2]

    Peng J X, Jing F Q, Wang L L, Li D H 2005 Acta Phys. Sin. 54 2194 (in Chinese) [彭建祥、经福谦、王礼立、李大红 2005 物理学报 54 2194]

    [3]

    Wang Y G, Chen D P, He H L, Wang L L, Jing F Q 2006 Acta Phys. Sin. 55 4202 (in Chinese) [王永刚、陈登平、贺宏亮、王礼立、经福谦 2006 物理学报 55 4202]

    [4]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese) [俞宇颖、谭 华、胡建波、戴诚达、陈大年、王焕然 2008 物理学报 57 2352]

    [5]

    Hu J B, Yu Y Y, Dai C D, Tan H 2005 Acta Phys. Sin. 54 5750 (in Chinese) [胡建波、俞宇颖、戴诚达、谭 华 2005 物理学报 54 5750]

    [6]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p148 (in Chinese) [谭 华 2006 实验冲击波物理导引(北京:国防工业出版社)第148页]

    [7]

    Hu J B, Zhou X M, Tan H 2008 Acta Phys. Sin. 57 2347 (in Chinese) [胡建波、周显明、谭 华 2008 物理学报 57 2347]

    [8]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [9]

    Hu J B, Zhou X M, Dai C D, Tan H, Li J B 2008 J. Appl. Phys. 104 083520

    [10]

    Santamara P D, Ross M, Errandonea D, Mukherjee G D, Mezouar M, Boehler R 2009 J. Chem. Phys. 130 124509

    [11]

    Liu Z L, Cai L C, Chen X R, Jing F Q 2008 Phys. Rev. B 77 024103

    [12]

    Hixson R S, Boness D A, Shaner J W, Moriarty J A 1989 Phys. Rev. Lett. 62 637

    [13]

    McQueen R G, Hopson J W, Fritz J N 1982 Rev. Sci. Instrum. 53 1982 245

    [14]

    Alexander C S, Chhabildas L C, Reinhart W D, Templeton D W 2008 Int. J. Impact Eng. 35 1376

    [15]

    McQueen R G, Fritz J N, Morris C E 1984 Shock Wave in Condensed Matter (1983) (Amsterdam: Elsevier Science) p95

    [16]

    Brown J M, Shaner J W 1984 Shock Wave in Condensed Matter (1983) (Amsterdam: Elsevier Science) p91

    [17]

    Millett J C F, Bourne N K, Rosenberg Z 2000 J. Appl. Phys. 87 8457

    [18]

    Bourne N K, Millett J C F 2001 J. Appl. Phys. 89 5368

    [19]

    Mattsson A E 2004 Shock Compression of Condensed Matter (2003) (America institute of physics) 743

    [20]

    Carter W J 1973 High Temp.-High Press. 5 316

    [21]

    Hayes D, Hixson R S, McQueen R G 2000 Shock Compression of Condensed Matter (1999) (America institute of physics) 483

    [22]

    Meyers M A 1994 Dynamic behavior of materials (New York: Wiley-interscience) p101

    [23]

    McQueen R G, March S P, Taylor J W, Fritz J N, Carter W J 1970 High Velocity Impact Phenomena (New York:Academic) p312

    [24]

    Boslough M B, Ahrens T J 1989 Rev. Sci. Instrum. 60 3711

    [25]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press) p392

    [26]

    Li J, Zhou X M, Li J B, Li S N, Zhu W J, Wang X, Jing F Q 2007 Acta Phys. Sin. 56 6557 (in Chinese) [李 俊、周显明、李加波、李赛男、祝文军、王 翔、经福谦 2007 物理学报 56 6557]

    [27]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) P213,384 (in Chinese) [经福谦 1999 实验物态方程导引 (北京:科学出版社)] 第213—384页

    [28]

    Heinz D L, Jeanloz R 1984 Phys. Rev. B 30 6045

    [29]

    Akins J A, Ahrens T J 2002 J. Geophys. Lett. 29 101394

    [30]

    Smart R M, Glasser F P 1974 J. Am. Ceram. Soc. 57 378

    [31]

    Furukawa Toshihharu, Brawer S A, White W B 1979 J. Am. Ceram. Soc. 62 351

    [32]

    Nellis W J, Yoo C S 1983 J. Geophys. Res. 95 21749

    [33]

    Prakapenka V P, Shen Guoyin, Dubrovinsky L S, Rivers M L, Sutton S R 2004 J. Phys. Chem. Solids 65 1537

    [34]

    Lyzenga G A, Ahrens T J 1983 J. Geophys. Res. 88 2431

  • [1] 刘泽涛, 陈博, 令伟栋, 包南云, 康冬冬, 戴佳钰. 冲击压缩下金属钯的结构相变. 物理学报, 2022, 71(3): 037102. doi: 10.7498/aps.71.20211511
    [2] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [3] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射. 物理学报, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [6] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66(5): 054702. doi: 10.7498/aps.66.054702
    [7] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [8] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法. 物理学报, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [9] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料. 物理学报, 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [10] 谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华. 金属Bi的卸载熔化实验研究. 物理学报, 2013, 62(3): 036401. doi: 10.7498/aps.62.036401
    [11] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [12] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [13] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [14] 谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔. 反向碰撞法测量Bi的低压Hugoniot数据. 物理学报, 2011, 60(10): 106401. doi: 10.7498/aps.60.106401
    [15] 马文, 祝文军, 张亚林, 经福谦. 纳米多晶铁的冲击相变研究. 物理学报, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [16] 何安民, 邵建立, 秦承森, 王裴. 单晶Cu冲击加载及卸载下塑性行为的微观模拟. 物理学报, 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [18] 胡建波, 周显明, 谭 华. 反向碰撞法测量Sn的高压卸载声速. 物理学报, 2008, 57(4): 2347-2351. doi: 10.7498/aps.57.2347
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 李 俊, 周显明, 李加波, 李赛男, 祝文军, 王 翔, 经福谦. z切LiTaO3单晶的冲击相变研究. 物理学报, 2007, 56(11): 6557-6564. doi: 10.7498/aps.56.6557
计量
  • 文章访问数:  5963
  • PDF下载量:  939
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-23
  • 修回日期:  2009-12-30
  • 刊出日期:  2010-04-05

一种高密度玻璃的多形性高压相变和物态方程研究

  • 1. (1)四川大学物理科学与技术学院,成都 610065; (2)四川大学物理科学与技术学院,成都 610065; 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900; (3)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900
    基金项目: 中国工程物理研究院科学技术发展基金(批准号:2008B0101001)资助的课题.

摘要: 在二级轻气炮上用无氧铜飞片直接撞击重玻璃平板样品(密度为4.817 g/cm3,材料牌号:ZF6)开展了冲击压缩实验研究,压力范围为52.1—167.8 GPa,并采用多通道瞬态辐射高温计和光分析技术测量了其雨贡纽线、高压声速和冲击波温度等动态特性.实验结果显示,上述性质在三个不同压力区间出现不连续性变化,表明冲击压缩下该样品材料存在多形性高压相变,相变起始压力分别为23,78和120 GPa.实测声速先是随冲击压力的增高而增加,并在78 GPa附近出现急剧下降,之后又随压力增长,并在120 GPa之后下降到体波声速,表明材料进入高压熔化相.温度数据同样在78和120 GPa处出现明显的不连续变化,并在120 GPa之后变化趋于平缓与计算的Lindeman熔化线相符,进一步印证了上述相变行为.实测雨贡纽数据与LASL数据库中的重玻璃数据相符,结果显示除23 GPa附近有一明显的突变外,高压区数据几近线性变化,表明重玻璃的两个高压相变均为二级相变.本文报道的重玻璃材料高压物性数据和序列相变认识对于发展反向加载技术、提高材料声速测量精度和适用压力范围具有实用价值.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回