搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同密度氢吸附金刚石(100)表面的微观结构

刘峰斌 汪家道 陈大融 赵明 何广平

引用本文:
Citation:

不同密度氢吸附金刚石(100)表面的微观结构

刘峰斌, 汪家道, 陈大融, 赵明, 何广平

The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption

Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong, Zhao Ming, He Guang-Ping
PDF
导出引用
  • 利用基于广义梯度近似的密度泛函理论,计算了金刚石(100)表面不同氢吸附密度的平衡态几何结构和态密度.结果表明对于2×1构型,在平行和垂直表面两个方向上发生弛豫,而1×1构型仅在垂直表面方向上发生弛豫.另外,清洁2×1,2×1 ∶0.5H和1×1 ∶1.5H表面,带隙中存在空表面态;而对于1×1 ∶2H和2×1 ∶H两种表面结构,空表面态上移进入导带,带隙中不存在表面态.结合电荷密度分布,探讨了金刚石(100)不同构型和氢吸附密度表面的表面态诱发机理.
    By means of density functional theory on the basis of generalized gradient approximation, the equilibrium geometries and electronic properties of different hydrogenated diamond (100) surfaces were calculated. The results indicate that in the case of 2×1 reconstruction structure, the relaxation occurs along directions parallel and vertical to the surface. However, the relaxation does not appear in the direction parallel to the surface in the case of 1×1 structure. In addition, for the clean surfaces with C(100)-2×1, C(100)-2×1 ∶0.5H and C(100)-1×1 ∶1.5H structures, empty surface states exist in their band gaps. But with regard to the C(100)-1×1 ∶2H and C(100)-2×1 ∶H surface structures, which are configurations with full hydrogen coverage, the empty surface states shift upwards into the conduction band. With the help of analysis of charge density distribution, the inducing mechanisms of surface states were investigated.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB707702)资助的课题.
    [1]

    Wang L, Ouyang X P, Fan R Y, Zhang Z B, Pan H B, Liu L Y, Lü F X, Bu B A 2008 Chin. Phys. B 17 3644

    [2]

    Drory M D, Hutchinson J W 1994 Science 263 1753

    [3]

    Zhou L, Jia X P, Ma H A, Zheng Y J, Li Y T 2008 Chin. Phys. B 17 4665

    [4]

    Fang W, Jiang Z G, Liang J Q, Liang Z Z, Wang W B, Zheng N 2009 Acta Phys. Sin. 58 8033 (in Chinese) [方 伟、姜志刚、梁静秋、梁中翥、王维彪、郑 娜 2009 物理学报 58 8033]

    [5]

    Yang Y N, Yan J F, Zhai C X, Zhang F C, Zhang W H, Zhang Z Y Acta Phys. Sin. (in Chinese) [杨彦宁、闫军锋、翟春雪、张富春、张威虎、张志勇 物理学报](已接受)

    [6]

    Liu F B, Wang J D, Chen D R 2008 Acta Phys. Sin. 57 1171 (in Chinese) [刘峰斌、汪家道、陈大融 2008 物理学报 57 1171]

    [7]

    Garrido A J, Heimbeck T, Stutzmann M 2005 Phys. Rev. B 71 245310

    [8]

    Kanai C, Watanabe K, Takakuwa Y 2001 Phys. Rev. B 63 235311

    [9]

    Liu F B, Wang J D, Liu B, Li X M, Chen D R 2007 Diamond Relat. Mater. 16 454

    [10]

    Girard H A, Simon N, Ballutaud D, Rochefoucauld E L, Etcheberry A 2007 Diamond Relat. Mater. 16 888

    [11]

    Loh K P, Xie X N, Lim Y H, Toe E J, Zheng J C, Ando T 2002 Surf. Sci. 505 93

    [12]

    Chu C J, D’Evelyn M P, Hauge R H, Margrave J L 1991 J. Appl. Phys. 70 1695

    [13]

    Liu F B, Wang J D, Chen D R, Yan D Y 2009 Chin. Phys. B 18 2041

    [14]

    Maier F, Ristein J, Ley L 2001 Phys. Rev. B 64 165411

    [15]

    Bobrov K, Mayne A, Dujardin G 2001 Nature. 413 616

    [16]

    Hamza A V, Kubiak G D, Stulen R H 1990 Surf. Sci. 237 35

    [17]

    Yang S H, Drabold D A, Adams J B 1993 Phys. Rev. B 48 5261

    [18]

    Zhang Z, Wensell M, Bernholc J 1995 Phys. Rev. B 51 5291

    [19]

    Pehrsson P E. Mercer T W. Chaney J A 2002 Surf. Sci. 497 13

    [20]

    Sque S J, Jones R, Briddon P R 2006 Phys. Rev. B 73 085313

    [21]

    Davidson B N, Pickett W E 1994 Phys. Rev. B 49 11253

    [22]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L, Hoffman A 2003 Phys. Rev. B 68 195416-1

    [23]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [24]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [25]

    Nebel C E, Kato H, Rezek B, Shin D, Takeuchi D, Watanabe H, Yamamoto T 2006 Diamond Relat. Mater. 15 264

    [26]

    Rezek B, Watanabe H, Nebel C E 2006 Appl. Phys. Lett. 88 042110

  • [1]

    Wang L, Ouyang X P, Fan R Y, Zhang Z B, Pan H B, Liu L Y, Lü F X, Bu B A 2008 Chin. Phys. B 17 3644

    [2]

    Drory M D, Hutchinson J W 1994 Science 263 1753

    [3]

    Zhou L, Jia X P, Ma H A, Zheng Y J, Li Y T 2008 Chin. Phys. B 17 4665

    [4]

    Fang W, Jiang Z G, Liang J Q, Liang Z Z, Wang W B, Zheng N 2009 Acta Phys. Sin. 58 8033 (in Chinese) [方 伟、姜志刚、梁静秋、梁中翥、王维彪、郑 娜 2009 物理学报 58 8033]

    [5]

    Yang Y N, Yan J F, Zhai C X, Zhang F C, Zhang W H, Zhang Z Y Acta Phys. Sin. (in Chinese) [杨彦宁、闫军锋、翟春雪、张富春、张威虎、张志勇 物理学报](已接受)

    [6]

    Liu F B, Wang J D, Chen D R 2008 Acta Phys. Sin. 57 1171 (in Chinese) [刘峰斌、汪家道、陈大融 2008 物理学报 57 1171]

    [7]

    Garrido A J, Heimbeck T, Stutzmann M 2005 Phys. Rev. B 71 245310

    [8]

    Kanai C, Watanabe K, Takakuwa Y 2001 Phys. Rev. B 63 235311

    [9]

    Liu F B, Wang J D, Liu B, Li X M, Chen D R 2007 Diamond Relat. Mater. 16 454

    [10]

    Girard H A, Simon N, Ballutaud D, Rochefoucauld E L, Etcheberry A 2007 Diamond Relat. Mater. 16 888

    [11]

    Loh K P, Xie X N, Lim Y H, Toe E J, Zheng J C, Ando T 2002 Surf. Sci. 505 93

    [12]

    Chu C J, D’Evelyn M P, Hauge R H, Margrave J L 1991 J. Appl. Phys. 70 1695

    [13]

    Liu F B, Wang J D, Chen D R, Yan D Y 2009 Chin. Phys. B 18 2041

    [14]

    Maier F, Ristein J, Ley L 2001 Phys. Rev. B 64 165411

    [15]

    Bobrov K, Mayne A, Dujardin G 2001 Nature. 413 616

    [16]

    Hamza A V, Kubiak G D, Stulen R H 1990 Surf. Sci. 237 35

    [17]

    Yang S H, Drabold D A, Adams J B 1993 Phys. Rev. B 48 5261

    [18]

    Zhang Z, Wensell M, Bernholc J 1995 Phys. Rev. B 51 5291

    [19]

    Pehrsson P E. Mercer T W. Chaney J A 2002 Surf. Sci. 497 13

    [20]

    Sque S J, Jones R, Briddon P R 2006 Phys. Rev. B 73 085313

    [21]

    Davidson B N, Pickett W E 1994 Phys. Rev. B 49 11253

    [22]

    Bobrov K, Mayne A, Comtet G, Dujardin G, Hellner L, Hoffman A 2003 Phys. Rev. B 68 195416-1

    [23]

    Kawarada H, Sasaki H, Sato A 1995 Phys. Rev. B 52 11351

    [24]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [25]

    Nebel C E, Kato H, Rezek B, Shin D, Takeuchi D, Watanabe H, Yamamoto T 2006 Diamond Relat. Mater. 15 264

    [26]

    Rezek B, Watanabe H, Nebel C E 2006 Appl. Phys. Lett. 88 042110

  • [1] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性. 物理学报, 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [2] 李守英, 赵卫民, 乔建华, 王勇. CO与H2在应变Fe(110)表面的竞争吸附. 物理学报, 2019, 68(21): 217103. doi: 10.7498/aps.68.20190660
    [3] 徐紫巍, 石常帅, 赵光辉, 王明渊, 刘桂武, 乔冠军. 电化学析氢反应中单层MoSe2氢吸附机理第一性原理研究. 物理学报, 2018, 67(21): 217102. doi: 10.7498/aps.67.20180882
    [4] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [5] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [6] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析. 物理学报, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [7] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [8] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [9] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [10] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [11] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [12] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [13] 杨彦楠, 王新强, 卢励吾, 黄呈橙, 许福军, 沈波. InAlN材料表面态性质研究. 物理学报, 2013, 62(17): 177302. doi: 10.7498/aps.62.177302
    [14] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [15] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算. 物理学报, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [16] 章永凡, 丁开宁, 林 伟, 李俊篯. VC(001)弛豫表面构型与电子结构第一性原理研究. 物理学报, 2005, 54(3): 1352-1360. doi: 10.7498/aps.54.1352
    [17] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [18] 杨剑瑜, 邓辉球, 胡望宇. Ag(110)表面声子谱的分析型EAM模型计算. 物理学报, 2004, 53(6): 1946-1951. doi: 10.7498/aps.53.1946
    [19] 许峰, 黄永仁. 射频场照射下同核体系的弛豫. 物理学报, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [20] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
计量
  • 文章访问数:  5912
  • PDF下载量:  815
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-15
  • 修回日期:  2010-01-13
  • 刊出日期:  2010-09-15

不同密度氢吸附金刚石(100)表面的微观结构

  • 1. (1)北方工业大学机电工程学院,北京 100144; (2)清华大学摩擦学国家重点实验室,北京 100084
    基金项目: 国家重点基础研究发展计划(批准号:2007CB707702)资助的课题.

摘要: 利用基于广义梯度近似的密度泛函理论,计算了金刚石(100)表面不同氢吸附密度的平衡态几何结构和态密度.结果表明对于2×1构型,在平行和垂直表面两个方向上发生弛豫,而1×1构型仅在垂直表面方向上发生弛豫.另外,清洁2×1,2×1 ∶0.5H和1×1 ∶1.5H表面,带隙中存在空表面态;而对于1×1 ∶2H和2×1 ∶H两种表面结构,空表面态上移进入导带,带隙中不存在表面态.结合电荷密度分布,探讨了金刚石(100)不同构型和氢吸附密度表面的表面态诱发机理.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回