搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质阻挡放电跃变升压模式下靶波斑图研究

董丽芳 岳晗 范伟丽 李媛媛 杨玉杰 肖红

引用本文:
Citation:

介质阻挡放电跃变升压模式下靶波斑图研究

董丽芳, 岳晗, 范伟丽, 李媛媛, 杨玉杰, 肖红

Target patterns obtained by suddenly increasing applied voltage in dielectric barrier discharge

Dong Li-Fang, Yue Han, Fan Wei-Li, Li Yuan-Yuan, Yang Yu-Jie, Xiao Hong
PDF
导出引用
  • 在大气压氩气介质阻挡放电中,首次通过跃变外加电压得到了稳定的靶波斑图.实验分别研究了跃变再缓变和直接跃变升压模式下靶波斑图的稳定性和波长选择.研究发现,跃变再缓变升压之后得到的靶波斑图不稳定,其与螺旋波相互转换.在这种转换中,靶波每次出现的时间为几十毫秒.直接跃变升压得到的靶波斑图稳定性明显增强,其稳定时间通常为5 min以上.比较不同升压模式下靶波斑图的波长,发现直接跃变升压模式下波长随电压升高减小较快.综上表明,升压模式对靶波斑图的稳定性和波长都有影响.
    Stable target patterns are produced by suddenly increasing the applied voltage in argon dielectric barrier discharge at atmospheric pressure for the first time. The stability and wavelength selection of target patterns obtained by gradually increasing applied voltage after suddenly increasing applied voltage and by directly suddenly increasing applied voltage are studied respectively. It is found that the target patterns obtained by gradually increasing applied voltage are unstable. There is mutual transformation between target pattern and spiral, in which the target pattern can only survive for several tens milliseconds. The target patterns obtained by directly suddenly increasing applied voltage are much more stable, which can survive for more than 5min. The wavelength selections of target patterns obtained by above two methods are studied. It is found that the wavelength of target patterns obtained by directly suddenly increasing applied voltage decreases more quickly as the applied voltage increases. The results show that the applied voltage increasing way in which the target patterns are obtained plays an important role in the stability and wavelength selection of target pattern.
    • 基金项目: 国家自然科学基金(批准号:10975043)、河北省自然科学基金(批准号:A2010000185)、河北省教育厅重点项目(批准号:ZD2010140)、高等学校博士学科点专项科研基金(批准号:20101301110001)资助的课题.
    [1]

    Qi B, Ren C S, Ma T C, Wang Y N, Wang D Z 2006 Acta Phys. Sin. 55 331 (in Chinese) [齐 冰、任春生、马腾才、王友年、王德真 2006 物理学报 55 331]

    [2]

    Kogelschatz U. 2002 IEEE Trans. Plasma Sci. 30 1400

    [3]

    Li H M, Li G, Li Y J, Li Y T 2008 Acta Phys. Sin. 57 969 (in Chinese) [李汉明、李 钢、李英俊、李玉同 2008 物理学报 57 969]

    [4]

    Liu Y H, Zhang J L, Wang W G, Li J, Liu D P, Ma T C 2006 Acta Phys. Sin. 55 3 (in Chinese) [刘艳红、张家良、王卫国、李 建、刘东平、马腾才 2006 物理学报 55 3]

    [5]

    Zhang X H, Huang J, Liu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 3 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 物理学报 58 3]

    [6]

    Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 2

    [7]

    Dong L F,Liu W L,Wang H F,He Y F,Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [8]

    Ammelt E, Astrov Y A, Purwins H G 1996 Phys. Rev. E 54 5

    [9]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [10]

    Dong L F, Li S F, Fan W L, Pan Y Y 2009 Phys. Plasmas 16 122308

    [11]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 18

    [12]

    Stollenwerk L, Laven J G, Purwins H G 2007 Phys. Rev. Lett. 98 255001

    [13]

    Fan W L, Dong L F, Li X C, Yin Z Q, He Y F, Liu S H 2007 Acta Phys. Sin. 56 3 (in Chinese) [范伟丽、董丽芳、李雪辰、 尹增谦、贺亚峰、刘书华2007 物理学报 56 3] 〖14] He Y F, Dong L F, Liu F C, Fan W L 2005 Acta Phys. Sin. 54 9 (in Chinese) [贺亚峰、董丽芳、刘富成、范伟丽 2005物理学报 54 9]

    [14]

    Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L, Wan L 2006 Phys. Rev. E 73 066206

    [15]

    Dong L F, Gao R L, He Y F, Fan W L, Liu W L 2006 Phys. Rev. E 74 057202

    [16]

    Dong L F, Li S F, Liu F, Liu F C, Liu S H, Fan W L Acta Phys. Sin. 55 1 (in Chinese) [董丽芳、李树峰、刘 峰、刘富成、刘书华、范伟丽 2006 物理学报 55 1]

    [17]

    Dong L F, Liu S H, Wang H F, Fan W L, Gao R L, Hao Y J 2007 Acta Phys. Sin. 56 3332 (in Chinese)[董丽芳、刘书华、王红芳、范伟丽、高瑞玲、郝雅娟 2007 物理学报 56 3332]

    [18]

    Astrov Y A, Purwins H G 1998 Phys. Rev. Lett. 80 24

    [19]

    Dong L F, Liu F C, Liu S H, He Y F, Fan W L 2005 Phys. Rev. E 72 046215

    [20]

    Liu S H, Dong L F, Liu F C, Li S F, Li X C, Wang H F 2006 Chin. Phys. Lett. 23 12

    [21]

    Dong L F, Wang H F, Liu F C, He Y F 2007 New J. Phys. 9 330

    [22]

    Thompson K L, Bajaj K M S, Ahlers G 2002 Phys. Rev. E 65 046218

    [23]

    Koschmeider L, Pallas S 1974 Int. J. Heat Mass Transfer 17 991

    [24]

    John R R, O’Neill P, Becker N, Ahlers G 2004 Phys. Rev. E 70 036313

    [25]

    Bruyn J R, Lewis B C, Shattuck M D, Swinney H L 2001 Phys. Rev. E 63 041305

  • [1]

    Qi B, Ren C S, Ma T C, Wang Y N, Wang D Z 2006 Acta Phys. Sin. 55 331 (in Chinese) [齐 冰、任春生、马腾才、王友年、王德真 2006 物理学报 55 331]

    [2]

    Kogelschatz U. 2002 IEEE Trans. Plasma Sci. 30 1400

    [3]

    Li H M, Li G, Li Y J, Li Y T 2008 Acta Phys. Sin. 57 969 (in Chinese) [李汉明、李 钢、李英俊、李玉同 2008 物理学报 57 969]

    [4]

    Liu Y H, Zhang J L, Wang W G, Li J, Liu D P, Ma T C 2006 Acta Phys. Sin. 55 3 (in Chinese) [刘艳红、张家良、王卫国、李 建、刘东平、马腾才 2006 物理学报 55 3]

    [5]

    Zhang X H, Huang J, Liu X D, Peng L, Sun Y, Chen W, Feng K C, Yang S Z 2009 Acta Phys. Sin. 58 3 (in Chinese) [张先徽、黄 骏、刘筱娣、彭 磊、孙 岳、陈 维、冯克成、杨思泽 2009 物理学报 58 3]

    [6]

    Breazeal W, Flynn K M, Gwinn E G 1995 Phys. Rev. E 52 2

    [7]

    Dong L F,Liu W L,Wang H F,He Y F,Fan W L, Gao R L 2007 Phys. Rev. E 76 046210

    [8]

    Ammelt E, Astrov Y A, Purwins H G 1996 Phys. Rev. E 54 5

    [9]

    Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202

    [10]

    Dong L F, Li S F, Fan W L, Pan Y Y 2009 Phys. Plasmas 16 122308

    [11]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 18

    [12]

    Stollenwerk L, Laven J G, Purwins H G 2007 Phys. Rev. Lett. 98 255001

    [13]

    Fan W L, Dong L F, Li X C, Yin Z Q, He Y F, Liu S H 2007 Acta Phys. Sin. 56 3 (in Chinese) [范伟丽、董丽芳、李雪辰、 尹增谦、贺亚峰、刘书华2007 物理学报 56 3] 〖14] He Y F, Dong L F, Liu F C, Fan W L 2005 Acta Phys. Sin. 54 9 (in Chinese) [贺亚峰、董丽芳、刘富成、范伟丽 2005物理学报 54 9]

    [14]

    Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L, Wan L 2006 Phys. Rev. E 73 066206

    [15]

    Dong L F, Gao R L, He Y F, Fan W L, Liu W L 2006 Phys. Rev. E 74 057202

    [16]

    Dong L F, Li S F, Liu F, Liu F C, Liu S H, Fan W L Acta Phys. Sin. 55 1 (in Chinese) [董丽芳、李树峰、刘 峰、刘富成、刘书华、范伟丽 2006 物理学报 55 1]

    [17]

    Dong L F, Liu S H, Wang H F, Fan W L, Gao R L, Hao Y J 2007 Acta Phys. Sin. 56 3332 (in Chinese)[董丽芳、刘书华、王红芳、范伟丽、高瑞玲、郝雅娟 2007 物理学报 56 3332]

    [18]

    Astrov Y A, Purwins H G 1998 Phys. Rev. Lett. 80 24

    [19]

    Dong L F, Liu F C, Liu S H, He Y F, Fan W L 2005 Phys. Rev. E 72 046215

    [20]

    Liu S H, Dong L F, Liu F C, Li S F, Li X C, Wang H F 2006 Chin. Phys. Lett. 23 12

    [21]

    Dong L F, Wang H F, Liu F C, He Y F 2007 New J. Phys. 9 330

    [22]

    Thompson K L, Bajaj K M S, Ahlers G 2002 Phys. Rev. E 65 046218

    [23]

    Koschmeider L, Pallas S 1974 Int. J. Heat Mass Transfer 17 991

    [24]

    John R R, O’Neill P, Becker N, Ahlers G 2004 Phys. Rev. E 70 036313

    [25]

    Bruyn J R, Lewis B C, Shattuck M D, Swinney H L 2001 Phys. Rev. E 63 041305

  • [1] 刘伟波, 董丽芳. 介质阻挡放电中同心圆环斑图的产生机理. 物理学报, 2015, 64(24): 245202. doi: 10.7498/aps.64.245202
    [2] 李雪辰, 刘润甫, 贾鹏英, 孔柳青. 流动氩气放电系统中条纹斑图形成的实验研究. 物理学报, 2012, 61(11): 115205. doi: 10.7498/aps.61.115205
    [3] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [4] 董丽芳, 李树峰, 范伟丽. 介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [5] 梁卓, 罗海云, 王新新, 关志成, 王黎明. 气流对氮气介质阻挡放电气体温度及放电模式的影响. 物理学报, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [6] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [7] 董丽芳, 谢伟霞, 赵海涛, 范伟丽, 贺亚峰, 肖红. 氩气/空气介质阻挡放电自组织超六边形斑图实验研究. 物理学报, 2009, 58(7): 4806-4811. doi: 10.7498/aps.58.4806
    [8] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [9] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [10] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [11] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [12] 董丽芳, 刘书华, 王红芳, 范伟丽, 高瑞玲, 郝雅娟. 介质阻挡放电中两种不同时空对称性的六边形发光斑图. 物理学报, 2007, 56(6): 3332-3336. doi: 10.7498/aps.56.3332
    [13] 范伟丽, 董丽芳, 李雪辰, 尹增谦, 贺亚峰, 刘书华. Air/Ar介质阻挡放电中正方形斑图的特性研究. 物理学报, 2007, 56(3): 1467-1470. doi: 10.7498/aps.56.1467
    [14] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究. 物理学报, 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [15] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [17] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, 2006, 55(1): 362-366. doi: 10.7498/aps.55.362
    [18] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  6133
  • PDF下载量:  1725
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-07
  • 修回日期:  2010-08-17
  • 刊出日期:  2011-03-05

介质阻挡放电跃变升压模式下靶波斑图研究

  • 1. 河北大学物理科学与技术学院,保定 071002
    基金项目: 国家自然科学基金(批准号:10975043)、河北省自然科学基金(批准号:A2010000185)、河北省教育厅重点项目(批准号:ZD2010140)、高等学校博士学科点专项科研基金(批准号:20101301110001)资助的课题.

摘要: 在大气压氩气介质阻挡放电中,首次通过跃变外加电压得到了稳定的靶波斑图.实验分别研究了跃变再缓变和直接跃变升压模式下靶波斑图的稳定性和波长选择.研究发现,跃变再缓变升压之后得到的靶波斑图不稳定,其与螺旋波相互转换.在这种转换中,靶波每次出现的时间为几十毫秒.直接跃变升压得到的靶波斑图稳定性明显增强,其稳定时间通常为5 min以上.比较不同升压模式下靶波斑图的波长,发现直接跃变升压模式下波长随电压升高减小较快.综上表明,升压模式对靶波斑图的稳定性和波长都有影响.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回