搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介质谐振器原理的左手材料设计

杨一鸣 屈绍波 王甲富 赵静波 柏鹏 李哲 夏颂 徐卓

引用本文:
Citation:

基于介质谐振器原理的左手材料设计

杨一鸣, 屈绍波, 王甲富, 赵静波, 柏鹏, 李哲, 夏颂, 徐卓

All-dielectric left-handed metamaterial design basedon dielectric resonator theory

Wang Jia-Fu, Xia Song, Xu Zhuo, Qu Shao-Bo, Zhao Jing-Bo, Yang Yi-Ying, Bai Peng, Li Zhe
PDF
导出引用
  • 本文通过对高介电常数介质基于介质谐振器理论进行分析,明确了利用高介电常数介质产生负介电常数或负磁导率的途径在于介质中产生具有Lorentz谐振形式的电磁响应的电偶极子或磁偶极子,指出了这种偶极子的产生来源于电磁波在介质中形成的驻波,而左手通带的形成正是由于电偶极子和磁偶极子之间的相互影响,破坏了驻波形成的条件所实现的. 模拟结果表明,通过将尺寸相同,介电常数不同的介质进行组合,使二者电谐振和磁谐振的频率点重合从而实现左手通带,最后利用高介电常数,低损耗的陶瓷进行样品制作并测试,测试结果证实了基于这一原理实
    By analyzing dielectric cube with high permittivity based on dielectric resonator theory, a new approach to the analyzing of left-handed metamaterials simultaneously with negative permittivity and negative permeability is proposed. The approach indicates that dipoles with Lorentz-type resonance electromagnetic responses can realize negative effective parameters in their negative resonant region. The dipole originates from standing wave in high permittivity dielectric cube. By combining electric dipole with magnetic dipole together, the interaction between two kinds of dipoles will destroy the standing wave and realize a left-handed passband. Numerical simulations indicate that by combining dielectric cubes with same sizes but different permittivities together, the electric resonant frequency and the magnetic resonant frequency can be coincident. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial constructed by this means.
    • 基金项目: 国家自然科学基金(批准号:50632030, 10804130, 60871027)资助的课题.
    [1]

    Veselago V G. 1968 Phys. Usp. 10 509

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [4]

    Xi S, Chen H, Wu B I, Kong J A 2008 Progress in Electromagnetics Research. 84 279

    [5]

    Ran L,Huangfu J, Chen H, Zhang X, Cheng K, Grzegorczyk T M, Kong J A 2005 Progress in Electromagnetics Research 51 249

    [6]

    Yang Y M, Qu S B 2009 Acta Phys. Sin. 58 1031(in Chinese) [杨一鸣、屈绍波 2009 物理学报 58 1031]

    [7]

    Zhao S C, Liu Z D,Wu Q X 2010 Chin. Phys. B 19 014211

    [8]

    Ma H, Qu S B, Xie F, Xu Z, Zhang S 2009 Acta Phys. Sin. 58 3961(in Chinese) [马 华、屈绍波、谢 峰、徐 卓、张 松 2009 物理学报 58 3961]

    [9]

    Wang J F,Qu S B, Ma H, Xu Z, Yang Y M, Zhang J Q 2008 Acta Phys. Sin. 57 5015 (in China)

    [10]

    Holloway C L, Kuester E F, Baker-Jarvis J, Kabos P 2003 IEEE Trans. Antennas Propag. 51 2596

    [11]

    Vendik O G, Gashinova M S 2004 Artificial 2004 Microwave Conference, 34th European 3 1209

    [12]

    Zhao Q, Du B, Kang L, Zhao H J, Xie Q, Li B, Zhang X, Zhou J, Li L T, Meng Y G 2008 Appl. Phys. Lett. 92 051106

    [13]

    Xu F, Bai Y, Qiao L J, Zhao H J, Zhou J 2009 Appl. Phys. Lett. 95 114104

    [14]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York

    [15]

    Sihvola A 1999 Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series 47 (The Institution of Electrical Engineers, Stevenage, Herts, UK, 1999)

    [16]

    Darko Kajfez, Pierre Guillon 1998 Dielectric Resonators second edition(Atlanta: Noble Publishing Corporation) p9

    [17]

    Chen X D, Tomasz M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608

    [18]

    Akram Ahmadi, Hossein Mosallaei 2008 Phy. Rev. B 77 045104

    [19]

    Smith D R, Schultz S, Markos P, Soukoulis C M 2010 Phys. Rev. B 65 195104

  • [1]

    Veselago V G. 1968 Phys. Usp. 10 509

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [4]

    Xi S, Chen H, Wu B I, Kong J A 2008 Progress in Electromagnetics Research. 84 279

    [5]

    Ran L,Huangfu J, Chen H, Zhang X, Cheng K, Grzegorczyk T M, Kong J A 2005 Progress in Electromagnetics Research 51 249

    [6]

    Yang Y M, Qu S B 2009 Acta Phys. Sin. 58 1031(in Chinese) [杨一鸣、屈绍波 2009 物理学报 58 1031]

    [7]

    Zhao S C, Liu Z D,Wu Q X 2010 Chin. Phys. B 19 014211

    [8]

    Ma H, Qu S B, Xie F, Xu Z, Zhang S 2009 Acta Phys. Sin. 58 3961(in Chinese) [马 华、屈绍波、谢 峰、徐 卓、张 松 2009 物理学报 58 3961]

    [9]

    Wang J F,Qu S B, Ma H, Xu Z, Yang Y M, Zhang J Q 2008 Acta Phys. Sin. 57 5015 (in China)

    [10]

    Holloway C L, Kuester E F, Baker-Jarvis J, Kabos P 2003 IEEE Trans. Antennas Propag. 51 2596

    [11]

    Vendik O G, Gashinova M S 2004 Artificial 2004 Microwave Conference, 34th European 3 1209

    [12]

    Zhao Q, Du B, Kang L, Zhao H J, Xie Q, Li B, Zhang X, Zhou J, Li L T, Meng Y G 2008 Appl. Phys. Lett. 92 051106

    [13]

    Xu F, Bai Y, Qiao L J, Zhao H J, Zhou J 2009 Appl. Phys. Lett. 95 114104

    [14]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York

    [15]

    Sihvola A 1999 Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series 47 (The Institution of Electrical Engineers, Stevenage, Herts, UK, 1999)

    [16]

    Darko Kajfez, Pierre Guillon 1998 Dielectric Resonators second edition(Atlanta: Noble Publishing Corporation) p9

    [17]

    Chen X D, Tomasz M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608

    [18]

    Akram Ahmadi, Hossein Mosallaei 2008 Phy. Rev. B 77 045104

    [19]

    Smith D R, Schultz S, Markos P, Soukoulis C M 2010 Phys. Rev. B 65 195104

计量
  • 文章访问数:  6278
  • PDF下载量:  1339
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-05
  • 修回日期:  2010-09-06
  • 刊出日期:  2011-07-15

基于介质谐振器原理的左手材料设计

  • 1. (1)空军工程大学理学院,西安 710051; (2)空军工程大学理学院,西安 710051;西安交通大学电子材料与器件教育部重点实验室,西安 710049; (3)空军工程大学综合电子信息系统研究中心,西安 710051; (4)西安交通大学电子材料与器件教育部重点实验室,西安 710049
    基金项目: 

    国家自然科学基金(批准号:50632030, 10804130, 60871027)资助的课题.

摘要: 本文通过对高介电常数介质基于介质谐振器理论进行分析,明确了利用高介电常数介质产生负介电常数或负磁导率的途径在于介质中产生具有Lorentz谐振形式的电磁响应的电偶极子或磁偶极子,指出了这种偶极子的产生来源于电磁波在介质中形成的驻波,而左手通带的形成正是由于电偶极子和磁偶极子之间的相互影响,破坏了驻波形成的条件所实现的. 模拟结果表明,通过将尺寸相同,介电常数不同的介质进行组合,使二者电谐振和磁谐振的频率点重合从而实现左手通带,最后利用高介电常数,低损耗的陶瓷进行样品制作并测试,测试结果证实了基于这一原理实

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回