搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波诱导下纳米铝粉与微米铝粉的爆炸特征对比研究

炎正馨

引用本文:
Citation:

激波诱导下纳米铝粉与微米铝粉的爆炸特征对比研究

炎正馨

Compare study on the explosion characteristics of nano-aluminum and micro-aluminum

Yan Zheng-Xin
PDF
导出引用
  • 对比研究了入射激波诱导下纳米铝粉和微米铝粉与环氧丙烷混合物快速反应系统中的爆炸特征.利用多台单色谱仪同步采集技术实验测定了二种反应混合物在不同诱导激波中强度作用下的点火延迟时间.为获得爆炸系统内部信息利用扫描电子显微镜(SEM),X射线衍射分析仪(XRD),X射线能谱(XPS)对相应铝粉反应生成物的结构、态貌、表面氧化层厚度进行了表征和分析.结果表明:TEM结果表明纳米铝粉生成物为絮状、针状和纤维状,而微米铝粉生成物为球状且体积增大;XRD结果显示在压缩区、点火区、燃烧区、爆炸区、传播区、碎片压缩致冷区生
    The explosion characteristic of propylene oxide/nano-, micro-alumium component were comparably investigated under the changed induced incident shock waves. The ignition delay times of two explosion systems were determined by the monochromater synchronous test technology. The structure, morphology, surface oxide layer of the products were analyized by scanning electron microscopy(SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the products of nano-Al are the spongy-structure, need-structure and fiber-structure, the morphology of the products of microsize aluminum is mainly in spherical structure. The different phases of alumina(α,β,γ,ε,δ) in compress section , ignition section, combustion section, explosion section, propagation section, and compressed products section was revealed by XRD data. It shows that the reaction in nano-Al reaction system is more violent than that in micro-Al one and the decreasing temperature align the axial cause the different phases of alimina . XPS spectrum show that the oxide layers on the surface of nano-alumina is about 35nm, alumina is almost is 92%; while the oxide layer on the surface of micro-alumina is 30nm, alumina is merely 65%. The experimental results that indicated the existing two different ignition mechanisms and combustion mechanism will be useful to the addition of energy material.
    • 基金项目: 博士后基金(批准号:20090460094,201003678),陕西省教育厅科学专项基金(批准号:09J592)和国家自然科学基金(批准号:50874088)资助的课题. # E-maill:zhengxinyan163@163.com
    [1]

    Mech M M, Kuo K K, Yeh C L, Lu Y C 1998 Combut.Sci.Technol. 135 269

    [2]

    Yan Z X, Wu J H, Ye S 2007 J.Appl.Phys. 101 1101061

    [3]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [4]

    Benkiewicz K, Hayashi A K 2002 Fluid Dynamics Research 30 269

    [5]

    Epstein M, Fauske H K, Theofanous T G 2000 Nuclear Engineering and Design 201 71

    [6]

    Benkiewicz K, Hayashi A K 2002 Fluid Dynamics Research 30 269

    [7]

    Paul E D, James D F, Mark D C 2005 J. Propu. Power. 21 256

    [8]

    Epstein M, Fauske H K, Theofanous T G 2000 Nuclear Engineering and Design 201 71

    [9]

    Valliappan S, Swaiakiewicz J A 2005 Puszynski, Powder Technol. 156 164

    [10]

    Levitas V I, Asay B W, Son S F, Pantoya M L 2007 J. Appl. Phys. 101 083524

    [11]

    Wronski C R M 1967 J. Appl. Phys.18 1731

    [12]

    Weast R C (Editor-in-Chief) 1984 CRC hadbook of chemistry and physics. 64th ed. Boca Raton, FL:CRC Press

    [13]

    Jesson B J, Madden P A 2000 J.Chem.Phys. 113 5924

    [14]

    Eckert J, Holzer J C, Ahn C C, Fu Z 1993 Nanostruct. Mater. 2 407

    [15]

    Lai S L, Guo J Y, Petrova V, Ramanath G, Allen L H 1996 Phsy.Rev.Lett. 77 9

    [16]

    Li H, Xie E Q, Zhang H L, Pang X J, Zhang Y Z 2007 Acta Phys. Sin. 56 3584 (in Chinese) [李 晖、谢二庆、张洪亮、潘孝军、张永哲 2007 物理学报 56 3584]

    [17]

    Guo J C, Liu X, Niu H B, Pen X 2007 Chin. Phys. 16 1632

  • [1]

    Mech M M, Kuo K K, Yeh C L, Lu Y C 1998 Combut.Sci.Technol. 135 269

    [2]

    Yan Z X, Wu J H, Ye S 2007 J.Appl.Phys. 101 1101061

    [3]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [4]

    Benkiewicz K, Hayashi A K 2002 Fluid Dynamics Research 30 269

    [5]

    Epstein M, Fauske H K, Theofanous T G 2000 Nuclear Engineering and Design 201 71

    [6]

    Benkiewicz K, Hayashi A K 2002 Fluid Dynamics Research 30 269

    [7]

    Paul E D, James D F, Mark D C 2005 J. Propu. Power. 21 256

    [8]

    Epstein M, Fauske H K, Theofanous T G 2000 Nuclear Engineering and Design 201 71

    [9]

    Valliappan S, Swaiakiewicz J A 2005 Puszynski, Powder Technol. 156 164

    [10]

    Levitas V I, Asay B W, Son S F, Pantoya M L 2007 J. Appl. Phys. 101 083524

    [11]

    Wronski C R M 1967 J. Appl. Phys.18 1731

    [12]

    Weast R C (Editor-in-Chief) 1984 CRC hadbook of chemistry and physics. 64th ed. Boca Raton, FL:CRC Press

    [13]

    Jesson B J, Madden P A 2000 J.Chem.Phys. 113 5924

    [14]

    Eckert J, Holzer J C, Ahn C C, Fu Z 1993 Nanostruct. Mater. 2 407

    [15]

    Lai S L, Guo J Y, Petrova V, Ramanath G, Allen L H 1996 Phsy.Rev.Lett. 77 9

    [16]

    Li H, Xie E Q, Zhang H L, Pang X J, Zhang Y Z 2007 Acta Phys. Sin. 56 3584 (in Chinese) [李 晖、谢二庆、张洪亮、潘孝军、张永哲 2007 物理学报 56 3584]

    [17]

    Guo J C, Liu X, Niu H B, Pen X 2007 Chin. Phys. 16 1632

  • [1] 方可, 张喆, 李玉同, 张杰. 双锥对撞点火机制2020年冬季实验中的瑞利-泰勒不稳定性分析. 物理学报, 2022, 71(3): 035204. doi: 10.7498/aps.71.20211172
    [2] 张棋, 马积瑞, 范金燕, 张杰. 对美国国家点火装置2010年以来实验设计思路的分析. 物理学报, 2022, 71(13): 135202. doi: 10.7498/aps.71.20220199
    [3] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20221012
    [4] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理. 物理学报, 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [5] 弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓. 摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征. 物理学报, 2016, 65(5): 056103. doi: 10.7498/aps.65.056103
    [6] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] 田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉. 针对神光Ⅱ升级装置的直接驱动快点火集成实验靶的初步设计. 物理学报, 2014, 63(12): 125205. doi: 10.7498/aps.63.125205
    [8] 黄雪峰, 李盛姬, 周东辉, 赵冠军, 王关晴, 徐江荣. 介观尺度下活性炭微粒的光镊捕捉、点火和扩散燃烧特性研究. 物理学报, 2014, 63(17): 178802. doi: 10.7498/aps.63.178802
    [9] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究. 物理学报, 2012, 61(11): 114207. doi: 10.7498/aps.61.114207
    [10] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [11] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于现役装置的冲击点火可行性概念研究. 物理学报, 2012, 61(11): 114206. doi: 10.7498/aps.61.114206
    [12] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光聚变冲击点火物理特性研究. 物理学报, 2011, 60(1): 015202. doi: 10.7498/aps.60.015202
    [13] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光脉冲参数对冲击点火的影响. 物理学报, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [14] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [15] 赵鹤云, 阚家德, 柳清菊, 刘佐权. 几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究. 物理学报, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [16] 张家泰, 何斌, 贺贤土, 常铁强, 许林宝, N.E.安德列夫. 激光聚变快点火机理研究. 物理学报, 2001, 50(5): 921-925. doi: 10.7498/aps.50.921
    [17] 陆庆正, 陈旸, 唐松柏, 马兴孝. 草酰氯的激光诱导荧光激发谱. 物理学报, 1991, 40(6): 878-884. doi: 10.7498/aps.40.878
    [18] 谢凤仙. t夸克偶素能谱的计算. 物理学报, 1987, 36(6): 778-784. doi: 10.7498/aps.36.778
    [19] 赵力耕, 徐至展. 激光诱导自电离及其光电子能谱. 物理学报, 1987, 36(4): 467-472. doi: 10.7498/aps.36.467
    [20] 唐孝威. π-介子星裂能谱仪. 物理学报, 1961, 17(2): 104-107. doi: 10.7498/aps.17.104
计量
  • 文章访问数:  5673
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-23
  • 修回日期:  2010-12-18
  • 刊出日期:  2011-07-15

激波诱导下纳米铝粉与微米铝粉的爆炸特征对比研究

  • 1. 西安科技大学西部矿井开采与灾害防治教育部重点实验室,西安 710054;西安科技大学理学院,西安 710054
    基金项目: 博士后基金(批准号:20090460094,201003678),陕西省教育厅科学专项基金(批准号:09J592)和国家自然科学基金(批准号:50874088)资助的课题. # E-maill:zhengxinyan163@163.com

摘要: 对比研究了入射激波诱导下纳米铝粉和微米铝粉与环氧丙烷混合物快速反应系统中的爆炸特征.利用多台单色谱仪同步采集技术实验测定了二种反应混合物在不同诱导激波中强度作用下的点火延迟时间.为获得爆炸系统内部信息利用扫描电子显微镜(SEM),X射线衍射分析仪(XRD),X射线能谱(XPS)对相应铝粉反应生成物的结构、态貌、表面氧化层厚度进行了表征和分析.结果表明:TEM结果表明纳米铝粉生成物为絮状、针状和纤维状,而微米铝粉生成物为球状且体积增大;XRD结果显示在压缩区、点火区、燃烧区、爆炸区、传播区、碎片压缩致冷区生

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回