搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属Pd薄膜的超临界流体沉积制备及其结构表征

王燕磊 张占文 李波 江波

引用本文:
Citation:

金属Pd薄膜的超临界流体沉积制备及其结构表征

王燕磊, 张占文, 李波, 江波

Preparation and structure characterization of Pd thin films by supercritical fluid deposition

Wang Yan-Lei, Zhang Zhan-Wen, Li Bo, Jiang Bo
PDF
导出引用
  • 用超临界流体化学沉积法以有机金属化合物为前驱物制备金属单质薄膜.超临界CO2为溶剂,六氟乙酰丙酮钯(Pd(Ⅱ)(hfac)2)为前驱物,在温度为100 ℃、压力为1218 MPa、反应时间为1020 h的条件下,经过H2气催化还原在单晶Si片上制备金属Pd薄膜,薄膜均匀且连续,厚度为0.31.5 m.经X射线光电子能谱和X射线衍射谱分析可知,沉积的薄膜为金属Pd单质晶体结构.扫描电子显微镜研究结果表明,沉积压力对薄膜的晶粒尺寸有很大
    Pd films are deposited on the Si wafers by the reduction of palladium(Ⅱ) hexafluoroacetylacetonate, which is used as the precursor, in the supercritical CO2 solution at temperature 100 ℃ and pressures between 12 and 18 MPa, and with reaction for 1020 h. The films are continuous, uniform and 0.31.5 m thick. The analyses of the Pd films by X-ray photoelectron spectroscopy and X-ray diffraction indicate that the structures of the deposited films are of single matter and nanocrystalline. The scanning electron microscope images show that pressure is a factor of affecting the size of the grain of the deposited film. At a pressure of 12 MPa, the size of grain is between 30 and 60 nm, at a pressure of 15 MPa, it is between 90 and 120 nm. Moreover, at a pressure of 18 MPa, it is between 150 and 180 nm. At the same temperature, with higher pressures, the size of the grain is bigger. On the same conditions, Pd thin films are deposited on the inner and the outer surfaces of cylindrical cavity.
    • 基金项目: 高温高密度等离子体物理国防科技重点实验室基金(批准号:9140C680803080C68)资助的课题.
    [1]

    James J W, Jason M B, Thomas J M 1999 Chem. Mater. 11 213

    [2]

    Ephrem T H, James J W 2004 Chem. Mater. 16 498

    [3]
    [4]
    [5]

    Neil E F, Scott M F, Joseph C P 2001 Chem. Mater. 13 2023

    [6]

    Albertina C, Jason M B, James J W 2002 Microelectron. Eng. 64 53

    [7]
    [8]
    [9]

    Jason M B, David P L, Albertina C, James J W 2001 Science 294 141

    [10]
    [11]

    Xu Q Q, Yin J Z, Xiao M, Wang A Q 2007 Chem. Bull. 70 188 (in Chinese) [徐琴琴、银建中、肖 敏、王爱琴 2007 化学通报 70 188]

    [12]
    [13]

    Han B X 2005 Supercritical Fluid Science and Technology (Beijing: Sinopec Press) p17 (in Chinese)[韩布兴 2005超临界流体科学与技术 (北京:石化出版社) 第17页]

    [14]
    [15]

    Liu J G, Wan X B, Fu Q, Zhou L, Xiao J 2005 At. Ener. Sci. Techn. 39 77 (in Chinese) [刘继光、万小波、付 渠、周 兰、肖 江 2005 原子能科学技术 39 77]

    [16]
    [17]

    Jay J S, Fu T, Diana R 2003 Chem. Vap. Depos. 9 258

    [18]
    [19]

    Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来、唐东升、刘星辉、海 阔、羊 亿、袁华军、解思深 2007 物理学报 56 6531]

    [20]

    Yin J Z, Zhang C J, Xu Q Q, Wang A Q 2009 J. Inorg. Mater. 24 129 (in Chinese) [银建中、张传杰、徐琴琴、王爱琴 2009 无机材料学报 24 129]

    [21]
    [22]

    Liu W 2008 M. S. Dissertation (Tianjin: Tianjin University) (in Chinese) [刘 伟 2008 硕士学位论文 (天津:天津大学)]

    [23]
    [24]

    Jason M B, David P L, James J W 2000 Chem. Mater. 12 2625

    [25]
    [26]
    [27]

    David P L, Jason M B, James J W 2000 Adv. Mater. 12 913

    [28]
    [29]

    Kondoh E, Kato H 2002 Microelectron. Eng. 64 495

    [30]
    [31]

    Wu Z Q, Wang B 2001 The Growth of Thin Films (Beijing: Science Press) p170 (in Chinese) [吴自勤、王 兵 2001 薄膜生长 (北京:科学出版社) 第170页]

    [32]

    Zong Y F, James J W 2004 Mat. Res. Soc. Symp. Proc. 812 F8.6.1

    [33]
    [34]

    Wu F M, Shi J Q, Wu Z Q 2001 Acta Phys. Sin. 50 1555 (in Chinese)[吴锋民、施建青、吴自勤 2001 物理学报 50 1555]

    [35]
    [36]
    [37]

    Cai X, Gu J F, Zhou P N, Yang X Y 1997 Trans. Metal Heat Treatm. 18 30 (in Chinese) [蔡 勋、顾剑锋、周平南、杨晓豫 1997 金属热处理学报 18 30]

  • [1]

    James J W, Jason M B, Thomas J M 1999 Chem. Mater. 11 213

    [2]

    Ephrem T H, James J W 2004 Chem. Mater. 16 498

    [3]
    [4]
    [5]

    Neil E F, Scott M F, Joseph C P 2001 Chem. Mater. 13 2023

    [6]

    Albertina C, Jason M B, James J W 2002 Microelectron. Eng. 64 53

    [7]
    [8]
    [9]

    Jason M B, David P L, Albertina C, James J W 2001 Science 294 141

    [10]
    [11]

    Xu Q Q, Yin J Z, Xiao M, Wang A Q 2007 Chem. Bull. 70 188 (in Chinese) [徐琴琴、银建中、肖 敏、王爱琴 2007 化学通报 70 188]

    [12]
    [13]

    Han B X 2005 Supercritical Fluid Science and Technology (Beijing: Sinopec Press) p17 (in Chinese)[韩布兴 2005超临界流体科学与技术 (北京:石化出版社) 第17页]

    [14]
    [15]

    Liu J G, Wan X B, Fu Q, Zhou L, Xiao J 2005 At. Ener. Sci. Techn. 39 77 (in Chinese) [刘继光、万小波、付 渠、周 兰、肖 江 2005 原子能科学技术 39 77]

    [16]
    [17]

    Jay J S, Fu T, Diana R 2003 Chem. Vap. Depos. 9 258

    [18]
    [19]

    Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来、唐东升、刘星辉、海 阔、羊 亿、袁华军、解思深 2007 物理学报 56 6531]

    [20]

    Yin J Z, Zhang C J, Xu Q Q, Wang A Q 2009 J. Inorg. Mater. 24 129 (in Chinese) [银建中、张传杰、徐琴琴、王爱琴 2009 无机材料学报 24 129]

    [21]
    [22]

    Liu W 2008 M. S. Dissertation (Tianjin: Tianjin University) (in Chinese) [刘 伟 2008 硕士学位论文 (天津:天津大学)]

    [23]
    [24]

    Jason M B, David P L, James J W 2000 Chem. Mater. 12 2625

    [25]
    [26]
    [27]

    David P L, Jason M B, James J W 2000 Adv. Mater. 12 913

    [28]
    [29]

    Kondoh E, Kato H 2002 Microelectron. Eng. 64 495

    [30]
    [31]

    Wu Z Q, Wang B 2001 The Growth of Thin Films (Beijing: Science Press) p170 (in Chinese) [吴自勤、王 兵 2001 薄膜生长 (北京:科学出版社) 第170页]

    [32]

    Zong Y F, James J W 2004 Mat. Res. Soc. Symp. Proc. 812 F8.6.1

    [33]
    [34]

    Wu F M, Shi J Q, Wu Z Q 2001 Acta Phys. Sin. 50 1555 (in Chinese)[吴锋民、施建青、吴自勤 2001 物理学报 50 1555]

    [35]
    [36]
    [37]

    Cai X, Gu J F, Zhou P N, Yang X Y 1997 Trans. Metal Heat Treatm. 18 30 (in Chinese) [蔡 勋、顾剑锋、周平南、杨晓豫 1997 金属热处理学报 18 30]

  • [1] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析. 物理学报, 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [2] 张海松, 徐进良, 朱鑫杰. 基于拟沸腾理论的超临界CO2管内传热恶化量纲分析. 物理学报, 2021, 70(4): 044401. doi: 10.7498/aps.70.20201546
    [3] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [4] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211464
    [5] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, 69(7): 070201. doi: 10.7498/aps.69.20191591
    [6] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响. 物理学报, 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [7] 徐肖肖, 吴杨杨, 刘朝, 王开正, 叶建. 水平螺旋管内超临界CO2冷却换热的数值模拟. 物理学报, 2015, 64(5): 054401. doi: 10.7498/aps.64.054401
    [8] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [9] 张彬, 王伟丽, 牛巧利, 邹贤劭, 董军, 章勇. H2气氛退火处理对Nb掺杂TiO2薄膜光电性能的影响. 物理学报, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [10] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [11] 文书堂, 张红卫, 张丽伟, 陈改荣, 卢景霄. SiH4/H2等离子体气相生长硅薄膜的动力学模型. 物理学报, 2010, 59(7): 4901-4910. doi: 10.7498/aps.59.4901
    [12] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [13] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [14] 张丽平, 张建军, 张 鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵 颖. H2, He混合稀释生长微晶硅锗薄膜. 物理学报, 2008, 57(11): 7338-7343. doi: 10.7498/aps.57.7338
    [15] 吴贵斌, 叶志镇, 赵 星, 刘国军, 赵炳辉. 金属诱导生长与超高真空化学气相沉积方法相结合制备多晶锗硅薄膜. 物理学报, 2006, 55(7): 3756-3759. doi: 10.7498/aps.55.3756
    [16] 祁 菁, 金 晶, 胡海龙, 高平奇, 袁保和, 贺德衍. H2对Ar稀释SiH4等离子体CVD制备多晶硅薄膜的影响. 物理学报, 2006, 55(11): 5959-5963. doi: 10.7498/aps.55.5959
    [17] 祝祖送, 林璇英, 余云鹏, 林揆训, 邱桂明, 黄 锐, 余楚迎. 用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究. 物理学报, 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [18] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究. 物理学报, 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [19] 江少恩, 郑志坚, 成金秀, 孙可煦, 杨家敏, 王红斌. X射线沿柱腔轴向能量传输实验测量. 物理学报, 2000, 49(7): 1303-1306. doi: 10.7498/aps.49.1303
    [20] 孙力, 陈延峰, 于涛, 闵乃本, 姜晓明, 修立松. 金属有机化学气相沉积法制备钛酸铅铁电薄膜. 物理学报, 1996, 45(10): 1729-1736. doi: 10.7498/aps.45.1729
计量
  • 文章访问数:  4242
  • PDF下载量:  1159
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-22
  • 修回日期:  2011-01-20
  • 刊出日期:  2011-04-05

金属Pd薄膜的超临界流体沉积制备及其结构表征

  • 1. 四川大学化学学院,成都 610064;
  • 2. 中国工程物理研究院激光聚变研究中心,高温高密度等离子体物理国防科技重点实验室,绵阳 621900
    基金项目: 高温高密度等离子体物理国防科技重点实验室基金(批准号:9140C680803080C68)资助的课题.

摘要: 用超临界流体化学沉积法以有机金属化合物为前驱物制备金属单质薄膜.超临界CO2为溶剂,六氟乙酰丙酮钯(Pd(Ⅱ)(hfac)2)为前驱物,在温度为100 ℃、压力为1218 MPa、反应时间为1020 h的条件下,经过H2气催化还原在单晶Si片上制备金属Pd薄膜,薄膜均匀且连续,厚度为0.31.5 m.经X射线光电子能谱和X射线衍射谱分析可知,沉积的薄膜为金属Pd单质晶体结构.扫描电子显微镜研究结果表明,沉积压力对薄膜的晶粒尺寸有很大

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回