-
金刚石/石墨烯复合电极因能发挥金刚石组分的低背景电流和宽电势窗口,且兼具石墨组分的高电化学活性,引起了人们的广泛关注。本文采用热丝化学气相沉积方法,通过调控短时生长时间,在纳米金刚石单颗粒层表面的竖立石墨烯片中嵌入纳米金刚石,形成复合三维电极。结果表明,当竖立石墨烯片顶部生长了纳米金刚石时,电极显示较宽的电势窗口(3.59 V)和极低的背景电流(1.27 mA/cm2),片层顶部少层石墨包覆纳米金刚石晶粒的复合结构是拓宽电势窗口和降低背景电流的关键。随着生长时间延长,竖立片层长大,纳米金刚石晶粒嵌入到片层中,构建了新型的纳米金刚石/石墨烯复合竖立片层结构;有序的石墨结构使得电化学活性面积增大为677.19 μC/cm2和比电容增至627.34μF/cm2,石墨组分增多使得电势窗口变窄,嵌入片层中的纳米金刚石有效降低背景电流。本研究提供了一种热丝化学气相沉积方法制备纳米金刚石/石墨烯复合三维电极的新方法,并为充分发挥金刚石/石墨烯复合薄膜的协同效应提供了一种新思路。Diamond/graphene composite three-dimensional electrode has attracted extensive attention because of its low background current and wide potential window of diamond component, and its high electrochemical activity of graphite component. In this paper, by means of hot wire chemical vapor deposition method, nano diamond is embedded in the vertical graphene sheet on the surface of single particle layer of nano diamond by regulating the short-term growth time to form a composite three-dimensional electrode. The results show that the electrode exhibits a wide potential window (3.59 V) and a very low background current (1.27 mA/cm2) when nanocrystals grow on the top of the vertical graphene sheet. The composite structure of nanocrystals coated with graphite on the top of the graphene sheet is the key to broaden the potential window and reduce the background current. With the increase of growth time, the vertical lamellae grew and nano-diamond grains were embedded into the lamellae, and a novel nano-diamond/graphene composite vertical lamellae structure was constructed. The ordered graphite structure increases the electrochemical active area to 677.19 μC/cm2 and the specific capacitance to 627.34 μF/cm2. The increase of graphite components makes the potential window narrow, and the embedded nanodiamond effectively reduces the background current. This study provides a new method for preparing three-dimensional nanodiamond/graphene composite electrodes by hot wire chemical vapor deposition, and provides a new idea for fully exploiting the synergistic effect of diamond/graphene composite films.
-
Keywords:
- nano-diamond /
- vertical graphene /
- electrode /
- electrochemical properties
-
[1] Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N 2018Appl. Surf. Sci.452 223
[2] Zhai Z, Huang N, Jiang X 2022Curr. Opin. Electrochem. 32 100884
[3] Chen C K, He Z, Xu A, Li X, Jiang M, Xu T, Yan B, Hu X 2021Functional Diamond, 1 117
[4] Yang N, Yu S, Macpherson J V, Einaga Y, Zhao H, Zhao G, Swain G M, Jiang X 2019Chem. Soc. Rev. 48 157
[5] Gao F, Nebel C E 2016ACS Appl. Mater.& Interfaces, 8 28244
[6] Watanabe T, Honda Y, Kanda K, Einaga Y 2014Phys. Status Solidi (A), 211 2709
[7] Sun Y, Wu Q, Xu Y, Bai H, Li C, Shi G 2011J. Mater. Chem. 21 7154
[8] Wei M, Terashima C, Lv M, Fujishima A, Gu Z Z 2009Chem. Commun.24 3624
[9] Sobaszek M, Siuzdak K, Ryl J, Sawczak M, Gupta S, Carrizosa S B, Ficek M, Dec B, Darowicki K, Bogdanowicz R 2017J. Phy. Chem. C 121 20821
[10] Shen A, Zou Y, Wang Q, Dryfe R A W, Huang X, Dou S, Dai L, Wang S 2014Angew. Chem. Int. Ed. 53 10804
[11] Kamata T, Kato D, Ida H, Niwa O 2014Diamond and Relat. Mater. 49:25
[12] Garcia-Segura S, Vieira dos Santos E, Martínez Huitle C A 2015Electrochem. Commun. 59 52
[13] Ayres Z J, Borrill A J, Newland J C, Newton M E, Macpherson Julie. V 2016Anal. Chem. 88 974
[14] Cobb S J, Ayres Z J, Macpherson J V 2018Annual Rev. Anal. Chem. 11 463
[15] Vlasov I, Lebedev O I, Ralchenko V G, Goovaerts E, Bertoni G, Van Tendeloo G, Konov V I 2007Adv. Mater. 19 4058
[16] Arenal R, Bruno P, Miller D J, Bleuel M, Lal J, Gruen D M 2007Phys. Rev. B 75 195431
[17] Sankaran K J, Kurian J, Chen H C, Dong C L, Lee C Y, Tai N H, Lin I N 2012J. Phys. D:Appl. Phys. 45 365303
[18] Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I N, Chu M, Stamboulis A 2009ACS Nano 3 1032
[19] Shalini J, Sankaran K J, Dong C L, Lee C Y, Tai N H, Lin I N 2013Nanoscale 5 1159
[20] Shalini J, Lin Y C, Chang T H, Sankaran K J, Chen H C, Lin I N, Lee C Y, Tai N H 2013Electrochim. Acta 92 9
[21] Zhai Z, Huang N, Yang B, Wang C, Liu L, Qiu J, Shi D, Yuan Z, Lu Z, Song H, Zhou M, Chen B, Jiang X 2019J. Phys. Chem. C 123 6018
[22] Yu S, Sankaran K J, Korneychuk S, Verbeeck J, Haenen K, Jiang X, Yang N 2019Nanoscale 11 17939
[23] Wu, Yang 2002Nano Lett. 2 355
[24] Tzeng Y, Chen W L, Wu C, Lo J Y, Li C Y 2013Carbon 53 120
[25] Banerjee D, Sankaran K J, Deshmukh S, Ficek M, Bhattacharya G, Ryl J, Phase D M, Gupta M, Bogdanowicz R, Lin I N, Kanjilal A, Haenen K, Roy S S 2019J. Phys. Chem. C 123 15458
[26] Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X 2019Small15 1901527
[27] Zhou M, Zhai Z, Liu L, Zhang C, Yuan Z, Lu Z, Chen B, Shi D, Yang B, Wei Q, Huang N, Jiang X 2021Appl. Surf. Sci. 551 149418
[28] Jiang M Y, Ma W C, Han S J, Chen C K, Fan D, Li X, Hu X J 2020J. Appl. Phys. 127 015301
[29] Jiang M Y, Zhang Z Q, Chen C K, Ma W C, Han S J, Li X, Lu S H, Hu X J 2020Carbon 168 536
[30] Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J. 2022PNAS119 2201451119
[31] Chen C K, Fan D, Xu H J, Jiang M Y, Li X, Lu S H, Ke C C, Hu X J. 2022Carbon 196 466
[32] 胡晓君,仰宗春2015 ZL 201510149374.4
[33] Klauser F, Steinmüller Nethl D, Kaindl R, Bertel E, Memmel N 2010Chem. Vap. Deposition 16 127
[34] Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009Phys. Rep. 473 51
[35] Cançado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011Nano Lett. 11 3190
[36] Shimada T, Sugai T, Fantini C, Souza M, Cançado L G, Jorio A, Pimenta M A, Saito R, Grüneis A, Dresselhaus G, Dresselhaus M S, Ohno Y, Mizutani T, Shinohara H 2005Carbon 43 1049
[37] Ferrari A C, Robertson J. Resonant 2001Phys. Rev. B 64 075414
[38] Vora H, Moravec T J 1981J. Appl. Phys. 52 6151
[39] Konyashin I, Frost D J, Sidorenko D, Orekhov A, Obraztsova E A, Sviridova T A 2020Diamond Relat. Mater. 109 108017
计量
- 文章访问数: 112
- PDF下载量: 3
- 被引次数: 0