搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究

蒋梅燕王平陈爱盛陈成克李晓鲁少华胡晓君

引用本文:
Citation:

纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究

蒋梅燕王平陈爱盛陈成克李晓鲁少华胡晓君

Study on preparation and electrochemical properties of nano-diamond/vertical graphene composite three-dimensional electrodes

Jiang Mei-Yan
PDF
导出引用
  • 金刚石/石墨烯复合电极因能发挥金刚石组分的低背景电流和宽电势窗口,且兼具石墨组分的高电化学活性,引起了人们的广泛关注。本文采用热丝化学气相沉积方法,通过调控短时生长时间,在纳米金刚石单颗粒层表面的竖立石墨烯片中嵌入纳米金刚石,形成复合三维电极。结果表明,当竖立石墨烯片顶部生长了纳米金刚石时,电极显示较宽的电势窗口(3.59 V)和极低的背景电流(1.27 mA/cm2),片层顶部少层石墨包覆纳米金刚石晶粒的复合结构是拓宽电势窗口和降低背景电流的关键。随着生长时间延长,竖立片层长大,纳米金刚石晶粒嵌入到片层中,构建了新型的纳米金刚石/石墨烯复合竖立片层结构;有序的石墨结构使得电化学活性面积增大为677.19 μC/cm2和比电容增至627.34μF/cm2,石墨组分增多使得电势窗口变窄,嵌入片层中的纳米金刚石有效降低背景电流。本研究提供了一种热丝化学气相沉积方法制备纳米金刚石/石墨烯复合三维电极的新方法,并为充分发挥金刚石/石墨烯复合薄膜的协同效应提供了一种新思路。
    Diamond/graphene composite three-dimensional electrode has attracted extensive attention because of its low background current and wide potential window of diamond component, and its high electrochemical activity of graphite component. In this paper, by means of hot wire chemical vapor deposition method, nano diamond is embedded in the vertical graphene sheet on the surface of single particle layer of nano diamond by regulating the short-term growth time to form a composite three-dimensional electrode. The results show that the electrode exhibits a wide potential window (3.59 V) and a very low background current (1.27 mA/cm2) when nanocrystals grow on the top of the vertical graphene sheet. The composite structure of nanocrystals coated with graphite on the top of the graphene sheet is the key to broaden the potential window and reduce the background current. With the increase of growth time, the vertical lamellae grew and nano-diamond grains were embedded into the lamellae, and a novel nano-diamond/graphene composite vertical lamellae structure was constructed. The ordered graphite structure increases the electrochemical active area to 677.19 μC/cm2 and the specific capacitance to 627.34 μF/cm2. The increase of graphite components makes the potential window narrow, and the embedded nanodiamond effectively reduces the background current. This study provides a new method for preparing three-dimensional nanodiamond/graphene composite electrodes by hot wire chemical vapor deposition, and provides a new idea for fully exploiting the synergistic effect of diamond/graphene composite films.
  • [1]

    Lesiak B, Kövér L, Tóth J, Zemek J, Jiricek P, Kromka A, Rangam N 2018Appl. Surf. Sci.452 223

    [2]

    Zhai Z, Huang N, Jiang X 2022Curr. Opin. Electrochem. 32 100884

    [3]

    Chen C K, He Z, Xu A, Li X, Jiang M, Xu T, Yan B, Hu X 2021Functional Diamond, 1 117

    [4]

    Yang N, Yu S, Macpherson J V, Einaga Y, Zhao H, Zhao G, Swain G M, Jiang X 2019Chem. Soc. Rev. 48 157

    [5]

    Gao F, Nebel C E 2016ACS Appl. Mater.& Interfaces, 8 28244

    [6]

    Watanabe T, Honda Y, Kanda K, Einaga Y 2014Phys. Status Solidi (A), 211 2709

    [7]

    Sun Y, Wu Q, Xu Y, Bai H, Li C, Shi G 2011J. Mater. Chem. 21 7154

    [8]

    Wei M, Terashima C, Lv M, Fujishima A, Gu Z Z 2009Chem. Commun.24 3624

    [9]

    Sobaszek M, Siuzdak K, Ryl J, Sawczak M, Gupta S, Carrizosa S B, Ficek M, Dec B, Darowicki K, Bogdanowicz R 2017J. Phy. Chem. C 121 20821

    [10]

    Shen A, Zou Y, Wang Q, Dryfe R A W, Huang X, Dou S, Dai L, Wang S 2014Angew. Chem. Int. Ed. 53 10804

    [11]

    Kamata T, Kato D, Ida H, Niwa O 2014Diamond and Relat. Mater. 49:25

    [12]

    Garcia-Segura S, Vieira dos Santos E, Martínez Huitle C A 2015Electrochem. Commun. 59 52

    [13]

    Ayres Z J, Borrill A J, Newland J C, Newton M E, Macpherson Julie. V 2016Anal. Chem. 88 974

    [14]

    Cobb S J, Ayres Z J, Macpherson J V 2018Annual Rev. Anal. Chem. 11 463

    [15]

    Vlasov I, Lebedev O I, Ralchenko V G, Goovaerts E, Bertoni G, Van Tendeloo G, Konov V I 2007Adv. Mater. 19 4058

    [16]

    Arenal R, Bruno P, Miller D J, Bleuel M, Lal J, Gruen D M 2007Phys. Rev. B 75 195431

    [17]

    Sankaran K J, Kurian J, Chen H C, Dong C L, Lee C Y, Tai N H, Lin I N 2012J. Phys. D:Appl. Phys. 45 365303

    [18]

    Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I N, Chu M, Stamboulis A 2009ACS Nano 3 1032

    [19]

    Shalini J, Sankaran K J, Dong C L, Lee C Y, Tai N H, Lin I N 2013Nanoscale 5 1159

    [20]

    Shalini J, Lin Y C, Chang T H, Sankaran K J, Chen H C, Lin I N, Lee C Y, Tai N H 2013Electrochim. Acta 92 9

    [21]

    Zhai Z, Huang N, Yang B, Wang C, Liu L, Qiu J, Shi D, Yuan Z, Lu Z, Song H, Zhou M, Chen B, Jiang X 2019J. Phys. Chem. C 123 6018

    [22]

    Yu S, Sankaran K J, Korneychuk S, Verbeeck J, Haenen K, Jiang X, Yang N 2019Nanoscale 11 17939

    [23]

    Wu, Yang 2002Nano Lett. 2 355

    [24]

    Tzeng Y, Chen W L, Wu C, Lo J Y, Li C Y 2013Carbon 53 120

    [25]

    Banerjee D, Sankaran K J, Deshmukh S, Ficek M, Bhattacharya G, Ryl J, Phase D M, Gupta M, Bogdanowicz R, Lin I N, Kanjilal A, Haenen K, Roy S S 2019J. Phys. Chem. C 123 15458

    [26]

    Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X 2019Small15 1901527

    [27]

    Zhou M, Zhai Z, Liu L, Zhang C, Yuan Z, Lu Z, Chen B, Shi D, Yang B, Wei Q, Huang N, Jiang X 2021Appl. Surf. Sci. 551 149418

    [28]

    Jiang M Y, Ma W C, Han S J, Chen C K, Fan D, Li X, Hu X J 2020J. Appl. Phys. 127 015301

    [29]

    Jiang M Y, Zhang Z Q, Chen C K, Ma W C, Han S J, Li X, Lu S H, Hu X J 2020Carbon 168 536

    [30]

    Jiang M Y, Chen C K, Wang P, Guo D F, Han S J, Li X, Lu S H, Hu X J. 2022PNAS119 2201451119

    [31]

    Chen C K, Fan D, Xu H J, Jiang M Y, Li X, Lu S H, Ke C C, Hu X J. 2022Carbon 196 466

    [32]

    胡晓君,仰宗春2015 ZL 201510149374.4

    [33]

    Klauser F, Steinmüller Nethl D, Kaindl R, Bertel E, Memmel N 2010Chem. Vap. Deposition 16 127

    [34]

    Malard L M, Pimenta M A, Dresselhaus G, Dresselhaus M S 2009Phys. Rep. 473 51

    [35]

    Cançado L G, Jorio A, Ferreira E H M, Stavale F, Achete C A, Capaz R B, Moutinho M V O, Lombardo A, Kulmala T S, Ferrari A C 2011Nano Lett. 11 3190

    [36]

    Shimada T, Sugai T, Fantini C, Souza M, Cançado L G, Jorio A, Pimenta M A, Saito R, Grüneis A, Dresselhaus G, Dresselhaus M S, Ohno Y, Mizutani T, Shinohara H 2005Carbon 43 1049

    [37]

    Ferrari A C, Robertson J. Resonant 2001Phys. Rev. B 64 075414

    [38]

    Vora H, Moravec T J 1981J. Appl. Phys. 52 6151

    [39]

    Konyashin I, Frost D J, Sidorenko D, Orekhov A, Obraztsova E A, Sviridova T A 2020Diamond Relat. Mater. 109 108017

  • [1] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, doi: 10.7498/aps.70.20202130
    [2] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, doi: 10.7498/aps.69.20201227
    [3] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, doi: 10.7498/aps.68.20190394
    [4] 秦世荣, 赵琪, 程振国, 苏丽霞, 单崇新. 纳米金刚石的分散、修饰及载药应用研究. 物理学报, doi: 10.7498/aps.67.20180862
    [5] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, doi: 10.7498/aps.67.20181524
    [6] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, doi: 10.7498/aps.66.048101
    [7] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究. 物理学报, doi: 10.7498/aps.65.197301
    [8] 郝卫苗, 杨小宝. 硫修饰对纳米金刚石光电性能调控的理论研究. 物理学报, doi: 10.7498/aps.64.056102
    [9] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, doi: 10.7498/aps.63.198201
    [10] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, doi: 10.7498/aps.63.148102
    [11] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响. 物理学报, doi: 10.7498/aps.61.106501
    [12] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, doi: 10.7498/aps.61.156103
    [13] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.61.148101
    [14] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, doi: 10.7498/aps.60.038401
    [15] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, doi: 10.7498/aps.60.058201
    [16] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, doi: 10.7498/aps.59.2666
    [17] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.59.7410
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.59.8226
    [19] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, doi: 10.7498/aps.58.3433
    [20] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, doi: 10.7498/aps.53.3467
计量
  • 文章访问数:  112
  • PDF下载量:  3
  • 被引次数: 0
出版历程

纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究

  • 浙江工业大学材料科学与工程学院, 杭州 310014

摘要: 金刚石/石墨烯复合电极因能发挥金刚石组分的低背景电流和宽电势窗口,且兼具石墨组分的高电化学活性,引起了人们的广泛关注。本文采用热丝化学气相沉积方法,通过调控短时生长时间,在纳米金刚石单颗粒层表面的竖立石墨烯片中嵌入纳米金刚石,形成复合三维电极。结果表明,当竖立石墨烯片顶部生长了纳米金刚石时,电极显示较宽的电势窗口(3.59 V)和极低的背景电流(1.27 mA/cm2),片层顶部少层石墨包覆纳米金刚石晶粒的复合结构是拓宽电势窗口和降低背景电流的关键。随着生长时间延长,竖立片层长大,纳米金刚石晶粒嵌入到片层中,构建了新型的纳米金刚石/石墨烯复合竖立片层结构;有序的石墨结构使得电化学活性面积增大为677.19 μC/cm2和比电容增至627.34μF/cm2,石墨组分增多使得电势窗口变窄,嵌入片层中的纳米金刚石有效降低背景电流。本研究提供了一种热丝化学气相沉积方法制备纳米金刚石/石墨烯复合三维电极的新方法,并为充分发挥金刚石/石墨烯复合薄膜的协同效应提供了一种新思路。

English Abstract

目录

    /

    返回文章
    返回