搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控

梁前 钱国林 罗祥燕 梁永超 谢泉

引用本文:
Citation:

外电场和双轴应变对MoSH/WSi2N4肖特基结势垒的调控

梁前, 钱国林, 罗祥燕, 梁永超, 谢泉

Modulation of MoSH/WSi2N4 Schottky-junction barrier by external electric field and biaxial strain

Liang Qian, Qian Guo-Lin, Luo Xiang-Yan, Liang Yong-Chao, Xie Quan
PDF
HTML
导出引用
  • 鉴于实验上最新合成的二维半导体材料WSi2N4(WSN)和二维金属材料MoSH(MSH), 构建了金属-半导体MSH/WSN肖特基结. 在实际的金属-半导体接触应用中, 肖特基势垒的存在严重降低了器件的性能. 因此, 获得较小的肖特基势垒甚至是欧姆接触至关重要. 本文使用第一性原理计算研究了在外电场和双轴应变作用下MSH/WSN肖特基结势垒的变化. 计算结果表明, 外电场和双轴应变均可以有效地调控MSH/WSN肖特基结势垒. 正向外电场能实现MSH/WSN肖特基结p型与n型肖特基接触之间的动态转化, 而负向外电场可实现MSH/WSN肖特基结向欧姆接触的转化. 此外, 较大的双轴应变可实现MSH/WSN肖特基结p型与n型肖特基接触的相互转化. 此项工作为基于WSN半导体的肖特基功能器件及场效应晶体管提供理论指导.
    In view of the newly synthesized two-dimensional (2D) semiconductor material WSi2N4 (WSN) and the 2D metal material MoSH (MSH), a metal-semiconductor MSH/WSN Schottky-junction is constructed in this work. In practical applications of metal-semiconductor contact, the presence of the Schottky barrier degrades the device performance severely. Therefore, it is crucial to obtain a smaller Schottky barrier height or even an Ohmic contact. Here, the first-principles calculations are used to investigate the variation of the Schottky barrier in MSH/WSN Schottky-junction under an external electric field and a biaxial strain. The results show that both external electric field and biaxial strain can effectively modulate the Schottky barrier of the MSH/WSN Schottky-junction. The dynamic switching between the p-type Schottky contact and the n-type Schottky contact can be achieved under the action of positive external electric field in the MSH/WSN Schottky-junction. Under the action of negative external electric field, the MSH/WSN Schottky-junction can be modulated to realize the transition from the Schottky contact to the Ohmic contact. The large biaxial strain can also induce the MSH/WSN Schottky-junction to realize the transition between the p-type Schottky contact and the n-type Schottky contact. This work may provide theoretical guidance for the WSN semiconductor based Schottky functional devices and field-effect transistors.
      通信作者: 谢泉, qxie@gzu.edu.cn
    • 基金项目: 贵州大学智能制造产教融合创新平台及研究生联合培养基地(批准号: 2020-520000-83-01-324061)、国家自然科学基金(批准号: 61264004)和贵州省高层次创新型人才培养项目(批准号: 黔科合人才[2015]4015)资助的课题.
      Corresponding author: Xie Quan, qxie@gzu.edu.cn
    • Funds: Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University, China (Grant No. 2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No. 61264004), and the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y 2017 Extreme Mech. Lett. 13 42Google Scholar

    [5]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T 2011 Nano Lett. 11 2396Google Scholar

    [6]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [7]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [8]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [9]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [10]

    Liu L, Feng Y, Shen Z 2003 Phys. Rev. B 68 104102Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834Google Scholar

    [13]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [14]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y 2010 Nano Lett. 10 4134Google Scholar

    [15]

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K 2017 Nat. Nanotechnol. 12 1124Google Scholar

    [16]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [17]

    Pomerantseva E, Gogotsi Y 2017 Nat. Energy 2 17089

    [18]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [19]

    Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar

    [20]

    Wu Q, Cao L, Ang Y S, Ang L K 2021 Appl. Phys. Lett. 118 113102Google Scholar

    [21]

    Qian W, Chen Z, Zhang J, Yin L 2022 J. Mater. Sci. Technol. 99 215Google Scholar

    [22]

    Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y 2021 Phys. Rev. Mater. 5 045801Google Scholar

    [23]

    Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A 2020 ACS Nano 14 3896Google Scholar

    [24]

    Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K 2021 ACS Nano 15 20319Google Scholar

    [25]

    Liu X, Gao P, Hu W, Yang J 2020 J. Phys. Chem. Lett. 11 4070Google Scholar

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Li Q, Zhou W, Wan X, Zhou J 2021 Physica E 131 114753Google Scholar

    [31]

    Wang Q, Cao L, Liang S J, Wu W, Wang G, Lee C H, Ong W L, Yang H Y, Ang L K, Yang S A 2021 npj 2D Mater. Appl. 5 1Google Scholar

  • 图 1  (a) MSH与(c) WSN的侧视图与俯视图; (b) MSH与(d) WSN的能带结构. 费米能级被设置为0点

    Fig. 1.  Top and side views of (a) MSH and (c) WSN; band structures of (b) MSH and (d) WSN. The Fermi level is set to zero.

    图 2  (a) MHS/WSN与(c) MSH/WSN肖特基结的侧视图; (b) MHS/WSN与(d) MSH/WSN肖特基结的俯视图

    Fig. 2.  Side views of (a) MHS/WSN and (c) MSH/WSN Schottky-junctions. Top views of (b) MHS/WSN and (d) MSH/WSN Schottky-junctions.

    图 3  (a) MHS/WSN与(d) MSH/WSN肖特基结的投影能带结构; (b) MHS/WSN与(e) MSH/WSN肖特基结的两个界面之间沿Z平面的平面平均差分电荷密度; (c) MHS/WSN与(f) MSH/WSN肖特基结的有效静电势. 其中绿色和黄色线条分别代表了MSH和WSN对肖特基结的贡献, 费米能级被设置为0点

    Fig. 3.  Projected band structures of (a) MHS/WSN and (d) MSH/WSN Schottky-junctions. Plane-averaged differential charge densities between two interfaces along Z-plane of (b) MHS/WSN and (e) MSH/WSN Schottky-junctions. The effective electrostatic potential of (c) MHS/WSN and (f) MSH/WSN Schottky-junctions. The green and yellow lines represent the contributions of MSH and WSN, respectively. The Fermi level is set to zero.

    图 4  不同外加电场下MSH/WSN肖特基结的投影能带结构(–0.4 — +0.4 V/Å), 费米能级被设置为0点

    Fig. 4.  Projected band structures of MSH/WSN Schottky-junctions under different external electric fields (ranging from –0.4 to 0.4 V/Å). The Fermi level is set to zero.

    图 5  MSH/WSN肖特基结在不同(a)外电场(Eext)和(b)双轴应变(ε)下的肖特基势垒的变化

    Fig. 5.  Variation of the Schottky barrier heights under different (a) external electric fields (Eext) and (b) biaxial strain (ε) in MSH/WSN Schottky-junction.

    图 6  不同双轴应变ε下MSH/WSN肖特基结的投影能带结构(–8%—+8%), 费米能级被设置为0点

    Fig. 6.  Projected band structures of MSH/WSN Schottky-junctions under different biaxial strain ε (ranging from –8% to 8%). The Fermi level is set to zero.

    图 7  基于MSH/WSN肖特基结的可调谐肖特基二极管的示意图

    Fig. 7.  Schematic diagram of a tunable Schottky diode based on MSH/WSN Schottky-junctions.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [4]

    Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H, Huang R, Kim J S, Li T, Li Y 2017 Extreme Mech. Lett. 13 42Google Scholar

    [5]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T 2011 Nano Lett. 11 2396Google Scholar

    [6]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033

    [7]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [8]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [9]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [10]

    Liu L, Feng Y, Shen Z 2003 Phys. Rev. B 68 104102Google Scholar

    [11]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [12]

    Kim G, Jang A R, Jeong H Y, Lee Z, Kang D J, Shin H S 2013 Nano Lett. 13 1834Google Scholar

    [13]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [14]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y 2010 Nano Lett. 10 4134Google Scholar

    [15]

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K 2017 Nat. Nanotechnol. 12 1124Google Scholar

    [16]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [17]

    Pomerantseva E, Gogotsi Y 2017 Nat. Energy 2 17089

    [18]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791Google Scholar

    [19]

    Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M 2020 Science 369 670Google Scholar

    [20]

    Wu Q, Cao L, Ang Y S, Ang L K 2021 Appl. Phys. Lett. 118 113102Google Scholar

    [21]

    Qian W, Chen Z, Zhang J, Yin L 2022 J. Mater. Sci. Technol. 99 215Google Scholar

    [22]

    Zang Y, Wu Q, Du W, Dai Y, Huang B, Ma Y 2021 Phys. Rev. Mater. 5 045801Google Scholar

    [23]

    Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A 2020 ACS Nano 14 3896Google Scholar

    [24]

    Wan X, Chen E, Yao J, Gao M, Miao X, Wang S, Gu Y, Xiao S, Zhan R, Chen K 2021 ACS Nano 15 20319Google Scholar

    [25]

    Liu X, Gao P, Hu W, Yang J 2020 J. Phys. Chem. Lett. 11 4070Google Scholar

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [30]

    Li Q, Zhou W, Wan X, Zhou J 2021 Physica E 131 114753Google Scholar

    [31]

    Wang Q, Cao L, Liang S J, Wu W, Wang G, Lee C H, Ong W L, Yang H Y, Ang L K, Yang S A 2021 npj 2D Mater. Appl. 5 1Google Scholar

  • [1] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [4] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211796
    [5] 黄玲琴, 朱靖, 马跃, 梁庭, 雷程, 李永伟, 谷晓钢. SiC电力电子器件金属接触研究现状与进展. 物理学报, 2021, 70(20): 207302. doi: 10.7498/aps.70.20210675
    [6] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [7] 徐峰, 于国浩, 邓旭光, 李军帅, 张丽, 宋亮, 范亚明, 张宝顺. Pt/Au/n-InGaN肖特基接触的电流输运机理. 物理学报, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [8] 严光明, 李成, 汤梦饶, 黄诗浩, 王尘, 卢卫芳, 黄巍, 赖虹凯, 陈松岩. 金属与半导体Ge欧姆接触制备、性质及其机理分析. 物理学报, 2013, 62(16): 167304. doi: 10.7498/aps.62.167304
    [9] 万宁, 郭春生, 张燕峰, 熊聪, 马卫东, 石磊, 李睿, 冯士维. AlGaAs/InGaAs PHEMT栅电流参数退化模型研究. 物理学报, 2013, 62(15): 157203. doi: 10.7498/aps.62.157203
    [10] 李博, 邵剑峰. 瞬态光电流对有机薄膜光伏器件中肖特基接触的研究. 物理学报, 2012, 61(7): 077301. doi: 10.7498/aps.61.077301
    [11] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [12] 黄维, 陈之战, 陈义, 施尔畏, 张静玉, 刘庆峰, 刘茜. 组合材料方法研究膜厚对Ni/SiC电极接触性质的影响. 物理学报, 2010, 59(5): 3466-3472. doi: 10.7498/aps.59.3466
    [13] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [14] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [15] 王 冲, 冯 倩, 郝 跃, 万 辉. AlGaN/GaN异质结Ni/Au肖特基表面处理及退火研究. 物理学报, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [16] 竺 云, 王太宏. 量子点器件的三端电测量研究. 物理学报, 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [17] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [18] 朱德光, 吴鼎芬. 金属-半导体比接触电阻的圆环结构测试法. 物理学报, 1987, 36(6): 752-759. doi: 10.7498/aps.36.752
    [19] 吴鼎芬, 王德宁. GaAs及其它半导体欧姆接触模型. 物理学报, 1985, 34(3): 332-340. doi: 10.7498/aps.34.332
    [20] 陈存礼. 金属-块状半导体的接触电阻率——四点结构模型. 物理学报, 1984, 33(9): 1314-1320. doi: 10.7498/aps.33.1314
计量
  • 文章访问数:  2698
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-07-06
  • 上网日期:  2022-10-19
  • 刊出日期:  2022-11-05

/

返回文章
返回