搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压IGBT雪崩鲁棒性的研究

杨武华 王彩琳 张如亮 张超 苏乐

引用本文:
Citation:

高压IGBT雪崩鲁棒性的研究

杨武华, 王彩琳, 张如亮, 张超, 苏乐

Study on avalanche ruggedness of high voltage IGBTs

Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le
PDF
HTML
导出引用
  • 随着绝缘栅双极晶体管(insulated gate bipolar transistor, IGBT)电压等级的提升和电流容量的增大, 雪崩效应已成为限制器件安全工作区(safe operating area, SOA)的重要因素. 雪崩发生后IGBT背面p+n结的空穴注入是其雪崩效应区别于其他器件的主要特征. 本文通过理论分析与数值模拟的方法研究了IGBT雪崩击穿特性以及雪崩产生电流丝的性质, 揭示了控制雪崩产生电流丝性质的物理机制. 结果表明IGBT背面的空穴注入导致其雪崩击穿曲线上产生额外的负微分电阻分支; 器件共基极电流增益αpnp是决定雪崩产生电流丝的关键因素, 随着αpnp的增大, 雪崩产生的电流丝强度越强、移动速度越慢, 从而导致器件的雪崩鲁棒性越弱.
    With the increase of IGBT voltage and current ratings, the avalanche effect has become an important factor limiting the safe operating area (SOA) of the device. The hole injection of the p+n junction on the back of the device when the avalanche effect occurs is the main feature that distinguishes the avalanche effect of the IGBT from other devices. In this paper, the avalanche breakdown characteristics of IGBT and the behavior of avalanche-generated current filaments are studied through theoretical analysis and numerical simulation, and the physical mechanism dominating the behavior of avalanche-generated current filaments is revealed. The results show that the hole injection on the backside of IGBT leads to an additional negative differential resistance branch on the avalanche breakdown curve, and the strength of the negative differential resistance effect depends on the common base current gain of IGBT αpnp. With the increase of αpnp, the negative differential resistance effect becomes stronger, the avalanche current at the valley point where the additional negative differential resistance branch transforms into the positive differential resistance branch also becomes higher. And the valley point at the avalanche breakdown curve of IGBT dominates the strength of the avalanche-generated filament. As a result, the strength of avalanche-generated filament depends on the αpnp. With the lattice temperature increasing, the avalanche breakdown voltage of IGBT increases, leading to the shifting of the avalanche breakdown curve towards a higher voltage. And with the increase of αpnp, the offset of the avalanche breakdown curves at high and low temperature becomes smaller, which dominates the lateral movement speed of the avalanche-generated filament. With the increase of the αpnp and the decrease of the offset of avalanche breakdown curves at high and low temperature, the avalanche-generated filament laterally moves more slowly. To sum up, with the increase of the αpnp of IGBT, the avalanche-generated filament becomes stronger and moves more slowly, which extremely causes the local overheating where the filaments exist and lowers the avalanche robustness of the device. Therefore, the αpnp of IGBT must be controlled precisely in order to have a good trade-off between the characteristics and the reliability of IGBT.
      通信作者: 杨武华, yangwuhua@xaut.edu.cn
    • 基金项目: 陕西省教育厅科研计划项目(批准号: 22JK0484)、西安理工大学教师博士科研启动经费(批准号: 103-451121007)、陕西省科学技术厅自然科学基础研究计划(批准号: 2023-JC-QN-0764)和陕西省重点研发计划子课题(批准号: 2021LLRH-02)资助的课题.
      Corresponding author: Yang Wu-Hua, yangwuhua@xaut.edu.cn
    • Funds: Project supported by the Scientific Research Program of Shaanxi Provincial Education Department of China (Grant No. 22JK0484), the Teachers' Doctoral Research Funding of Xi’an University of Technology of China (Grant No. 103-451121007), the Natural Science Basic Research Program of Science and Technology Department of Shaanxi Province of China (Grant No. 2023-JC-QN-0764), and the Sub-Project of the Key Research and Development Program of Shaanxi Province of China (Grant No. 2021LLRH-02).
    [1]

    Egawa H 1966 IEEE Trans. Electron. Devices 13 754Google Scholar

    [2]

    Baburske R, Lutz J, Heinze B 2010 IEEE 2010 IEEE International Reliability Physics Symposium-Garden Grove (Anaheim) CA, USA, May 2–6, 2010 p162

    [3]

    Hower P L, Reddi V K 2005 IEEE Trans. Electron. Devices 17 320Google Scholar

    [4]

    Schulze H J, Niedernostheide F J 2013 IEEE Trans. Electron. Devices 60 551Google Scholar

    [5]

    Knipper U, Wachutka G, Pfirsch F, et al. 2008 International Symposium on Power Semiconductor Devices & IC's Orlando, USA, May 18–22, 2008 p307

    [6]

    Tong X, Liu S, Sun W, et al. 2020 IEEE Trans. Electron. Devices 67 3908Google Scholar

    [7]

    Endo K, Nakamae K 2019 IEEE Trans. Device Mater. Reliab. 19 723Google Scholar

    [8]

    Bhojani R, Kowalsky J, Lutz J, et al. 2018 International Symposium on Power Semiconductor Devices and IC’s Palmer House Hilton, USA, May 13–17, 2018 p164

    [9]

    Lutz J, Baburske R, Chen M, et al. 2009 IEEE Trans. Electron. Devices 56 2825Google Scholar

    [10]

    Lutz J, Schlangenotto H, et al. 2018 Semiconductor Power Devices: Physics, Characteristic, Reliability (Switzerland: Springer International Publishing)

    [11]

    Spirito P, Breglio G, Irace A, et al. 2014 IEEE Trans. Electron. Devices 61 1457Google Scholar

    [12]

    Baliga B J 2013 IEEE Trans. Electron. Devices 60 535Google Scholar

    [13]

    Heinze B, Felsl H P, Mauder A, et al. 2005 International Symposium on Power Semiconductor Devices & IC’s CA, USA, May 13–17, 2005 p159

    [14]

    Wang C, Zhang L 2017 IEICE Electron. Express 14 1Google Scholar

    [15]

    Breglio G, Irace A, Napoli E, et al. 2013 IEEE Trans. Electron. Devices 60 563Google Scholar

    [16]

    Knipper U, Pfirsch F, Raker T, et al. 2008 International Conference on Advanced Semiconductor Devices and Microsystems Smolenice, Slovakia, Oct. 12–16, 2008 p159

    [17]

    Felsl H P, Falck E, Niedernostheide F J, et al. 2006 International Symposium on Power Semiconductor Devices & IC’s Smolenice, Slovakia, June 4–8, 2006 p1

    [18]

    Tong X, Liu S, Sun W, et al. 2020 Trans. Electron. Devices 67 3908

    [19]

    Niedernostheide F J, Falck E, Schulze H J, et al. 2006 IEEP. Circ. Dev. Syst. 153 3Google Scholar

    [20]

    Shiba Y, Omura I, Tsukuda M 2016 28 th International Symposium on Power Semiconductor Devices & IC’s Prague, Czech Republic, June 12–16, 2016 p339

    [21]

    Watanabe M, Shigyo N, Hoshii T, et al. 2019 International Symposium on Power Semiconductor Devices and IC’s Shanghai, China, May 19–23, 2019 p311

  • 图 1  3.3 kV平面栅FS-IGBT的元胞剖面结构

    Fig. 1.  3.3 kV planar FS-IGBT structure.

    图 2  3.3 kV FS-IGBT的雪崩击穿特性曲线(T = 300 K, NP+ = 2×1017 cm–3, τp0 = 3 μs)

    Fig. 2.  The simulated avalanche breakdown curve of 3.3 kV FS-IGBT(T = 300 K, NP+ = 2×1017 cm–3, τp0 = 3 μs).

    图 3  不同雪崩电流密度下器件内部的纵向电场分布(沿元胞中心剖分)

    Fig. 3.  Vertical distributions of electric field along the cell center at different avalanche current(dissected along the cell center).

    图 4  3.3 kV FS-IGBT在不同集电极掺杂浓度NP+下的雪崩击穿特性曲线(T = 300 K, τp0 = 3 μs)

    Fig. 4.  The simulated avalanche breakdown curves of 3.3 kV FS-IGBT with different NP+(T = 300 K, τp0 = 3 μs)

    图 5  3.3 kV FS-IGBT在不同集电极掺杂浓度NP+下, αpnp与雪崩电流密度JC的关系曲线

    Fig. 5.  The αpnp for 3.3 kV FS-IGBT with different NP+ as a function of JC.

    图 6  不同集电极掺杂浓度NP+的3.3 kV FS-IGBT在常温与高温下的雪崩击穿曲线(τp0 = 3 μs)

    Fig. 6.  The avalanche breakdown curves of 3.3 kV FS-IGBT with different NP+ at high and low temperature (τp0 = 3 μs)

    图 7  不同集电极掺杂浓度NP+的3.3 kV FS-IGBT在常温与高温下, αpnpJC的关系曲线

    Fig. 7.  The αpnp for 3.3 kV FS-IGBT with different NP+ as a function of JC at high and low temperature.

    图 8  用于模拟雪崩电流丝的3.3 kV FS-IGBT结构模型(τp0 = 3 μs)

    Fig. 8.  The structure model of 3.3 kV FS-IGBT (τp0 = 3 μs) used to simulate current filament at the static avalanche.

    图 9  恒温仿真的NP+ = 2×1017 cm–3NP+ = 1×1018 cm–3 FS-IGBT工作在静态雪崩模式下时, VCE随时间变化曲线(所施加的电流脉冲幅值为50 A, 上升时间1 μs)

    Fig. 9.  Simulated VCE vs. time curve for FS-IGBTs with different NP+ working in static avalanche mode in isothermal case (the applied current pulse amplitude is 50 A, rise time is 1 μs).

    图 10  恒温仿真的NP+ = 2×1017 cm–3NP+ = 1×1018 cm–3 FS-IGBT工作在静态雪崩模式下时, 器件内部的电流密度分布(横向电流密度分布在J2结处被截取得到)

    Fig. 10.  Simulated current density distributions inside the FS-IGBTs with different NP+ working in static avalanche mode in isothermal case (lateral current density distribution is along the J2 junction).

    图 11  热电仿真的NP+ = 2×1017 cm–3NP+ = 1×1018 cm–3 FS-IGBT工作在静态雪崩模式下时, VCE和最高晶格温度Tmax随时间变化曲线(所施加的电流脉冲与图9完全相同)

    Fig. 11.  Simulated VCE and maximum lattice temperature Tmax vs. time curves for FS-IGBTs with different NP+ working in static avalanche mode in electrothermal case (applied current pulse is the same as Fig. 9).

    图 12  热电仿真的NP+ = 2×1017 cm–3NP+ = 1×1018 cm–3 FS-IGBT工作在静态雪崩模式下时, 器件内部的电流分布(横向电流密度分布在J2结处被截取得到)

    Fig. 12.  Simulated current density distributions inside the FS-IGBTs with different NP+ working in static avalanche mode in electrothermal case (lateral current density distribution is along the J2 junction).

  • [1]

    Egawa H 1966 IEEE Trans. Electron. Devices 13 754Google Scholar

    [2]

    Baburske R, Lutz J, Heinze B 2010 IEEE 2010 IEEE International Reliability Physics Symposium-Garden Grove (Anaheim) CA, USA, May 2–6, 2010 p162

    [3]

    Hower P L, Reddi V K 2005 IEEE Trans. Electron. Devices 17 320Google Scholar

    [4]

    Schulze H J, Niedernostheide F J 2013 IEEE Trans. Electron. Devices 60 551Google Scholar

    [5]

    Knipper U, Wachutka G, Pfirsch F, et al. 2008 International Symposium on Power Semiconductor Devices & IC's Orlando, USA, May 18–22, 2008 p307

    [6]

    Tong X, Liu S, Sun W, et al. 2020 IEEE Trans. Electron. Devices 67 3908Google Scholar

    [7]

    Endo K, Nakamae K 2019 IEEE Trans. Device Mater. Reliab. 19 723Google Scholar

    [8]

    Bhojani R, Kowalsky J, Lutz J, et al. 2018 International Symposium on Power Semiconductor Devices and IC’s Palmer House Hilton, USA, May 13–17, 2018 p164

    [9]

    Lutz J, Baburske R, Chen M, et al. 2009 IEEE Trans. Electron. Devices 56 2825Google Scholar

    [10]

    Lutz J, Schlangenotto H, et al. 2018 Semiconductor Power Devices: Physics, Characteristic, Reliability (Switzerland: Springer International Publishing)

    [11]

    Spirito P, Breglio G, Irace A, et al. 2014 IEEE Trans. Electron. Devices 61 1457Google Scholar

    [12]

    Baliga B J 2013 IEEE Trans. Electron. Devices 60 535Google Scholar

    [13]

    Heinze B, Felsl H P, Mauder A, et al. 2005 International Symposium on Power Semiconductor Devices & IC’s CA, USA, May 13–17, 2005 p159

    [14]

    Wang C, Zhang L 2017 IEICE Electron. Express 14 1Google Scholar

    [15]

    Breglio G, Irace A, Napoli E, et al. 2013 IEEE Trans. Electron. Devices 60 563Google Scholar

    [16]

    Knipper U, Pfirsch F, Raker T, et al. 2008 International Conference on Advanced Semiconductor Devices and Microsystems Smolenice, Slovakia, Oct. 12–16, 2008 p159

    [17]

    Felsl H P, Falck E, Niedernostheide F J, et al. 2006 International Symposium on Power Semiconductor Devices & IC’s Smolenice, Slovakia, June 4–8, 2006 p1

    [18]

    Tong X, Liu S, Sun W, et al. 2020 Trans. Electron. Devices 67 3908

    [19]

    Niedernostheide F J, Falck E, Schulze H J, et al. 2006 IEEP. Circ. Dev. Syst. 153 3Google Scholar

    [20]

    Shiba Y, Omura I, Tsukuda M 2016 28 th International Symposium on Power Semiconductor Devices & IC’s Prague, Czech Republic, June 12–16, 2016 p339

    [21]

    Watanabe M, Shigyo N, Hoshii T, et al. 2019 International Symposium on Power Semiconductor Devices and IC’s Shanghai, China, May 19–23, 2019 p311

  • [1] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [2] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [3] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [4] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [5] 何文奇, 陈嘉誉, 张莲彬, 卢大江, 廖美华, 彭翔. 一种基于多重散射的光学Hash函数. 物理学报, 2021, 70(5): 054203. doi: 10.7498/aps.70.20201492
    [6] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [7] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [8] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [9] 段东立, 武小悦. 基于可调负载重分配的无标度网络连锁效应分析. 物理学报, 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [10] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [11] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [12] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [13] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [14] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [15] 温淑焕, 袁俊英. 基于无源性的不确定机器人的力控制. 物理学报, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [16] 何文奇, 彭翔, 祁永坤, 孟祥锋, 秦琬, 高志. 基于非线性级联傅里叶变换的光学Hash函数构造. 物理学报, 2010, 59(3): 1762-1768. doi: 10.7498/aps.59.1762
    [17] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [18] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [19] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究. 物理学报, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [20] 孙梅生, 郑南方, 方星豪, 亢强, 李忠海, 王磊, 孙稚, 姚成刚. 稠油采集高效电加热方法的研究. 物理学报, 2002, 51(12): 2906-2910. doi: 10.7498/aps.51.2906
计量
  • 文章访问数:  4194
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2023-01-09
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回