-
过渡金属二硫族化物因其广泛存在超导、电荷密度波等新奇的物理现象成为了近些年来凝聚态物理研究中的一大热点, 同时这也为研究超导和电荷密度波等电子序之间的相互作用提供了典型的材料体系. 本文利用角分辨光电子能谱对1T结构的NbSeTe单晶进行系统的研究, 揭示了其电子结构. 沿高对称方向的能带测量发现, 1T-NbSeTe布里渊区M点附近存在一个范霍夫奇点, 能量位于费米能以下约250 meV处. 对能带色散的仔细分析发现该体系中没有明显电子-玻色子(声子)耦合带来的能带扭折. 基于上述实验结果, 对过渡金属二硫族化物中电荷密度波和超导的产生以及1T-NbSeTe中电荷密度波和超导被抑制的可能原因进行了讨论.Transition metal dichalcogenides (TMDs) have attracted a lot of interest in condensed matter physics research due to the existence of multiple novel physical phenomena, including superconductivity and charge density wave order, and also TMDs provide a unique window for studying the interactions between different ground states. In this work, the electronic structure of 1T-NbSeTe is systematically examined by angle-resolved photoemission spectroscopy (ARPES) for the first time. A van Hove singularity (VHS) is identified at the M point, with binding energy of 250 meV below the Fermi level. Careful analysis is carried out to examine the band dispersions along different high symmetry directions and the possible many-body effect. However, the dispersion kink—a characteristic feature of electron-boson coupling is not obvious in this system. In TMD materials, the van Hove singularity near the Fermi level and the electron-boson (phonon) coupling are suggested to play an important role in forming charge density wave (CDW) and superconductivity, respectively. In this sense, our experimental results may provide a direct explanation for the weakened CDW and relatively low superconducting transition temperature in 1T-NbSeTe. These results may also provide an insight into the charge-density-wave orders in the relevant material systems.
-
Keywords:
- transition metal dichalcogenides /
- angle-resolved photoemission spectroscopy /
- van Hove singularity /
- electron-boson coupling
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[3] Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar
[4] Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar
[7] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar
[8] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V, Cava R J 2008 Phys. Rev. B 78 104520Google Scholar
[9] Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E 2016 Nat. Commun. 7 11043Google Scholar
[10] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar
[11] Xi X, Berger H, Forro L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar
[12] Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T, Liu Z 2017 Nat. Commun. 8 394Google Scholar
[13] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar
[14] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar
[15] Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D, Renner C 2017 Phys. Rev. Lett. 118 017002Google Scholar
[16] Fan X, Chen H X, Zhao L L, Jin S F, Wang G 2019 Solid State Commun. 297 6Google Scholar
[17] Wang H T, Li L J, Ye D S, Cheng X H, Xu Z A 2007 Chin. Phys. 16 2471Google Scholar
[18] Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar
[19] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar
[20] Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G, Wehling T O 2018 J. Phys. Condens. Mat. 30 325601Google Scholar
[21] Naik I, Rastogi A K 2011 Pramana 76 957Google Scholar
[22] Yan D, Wang S, Lin Y S, Wang G H, Zeng Y, Boubeche M, He Y, Ma J, Wang Y H, Yao D X, Luo H X 2019 J. Phys. Condens. Mat. 32 025702Google Scholar
[23] Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar
[24] Tonjes W C, Greanya V A, Liu R, Olson C G, Molinie P 2001 Phys. Rev. B 63 235101Google Scholar
[25] Straub T, Finteis T, Claessen R, Steiner P, Hufner S, Blaha P, Oglesby C S, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar
[26] Neto A C 2001 Phys. Rev. Lett. 86 4382Google Scholar
[27] Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar
[28] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[29] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[31] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar
[32] Rahn D J, Hellmann S, Kallaene M, Sohrt C, Kim T K, Kipp L, Rossnagel K 2012 Phys. Rev. B 85 224532Google Scholar
[33] Rice T M, Scott G K 1975 Phys. Rev. Lett. 35 120Google Scholar
[34] Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar
[35] Kim J-J, Yamaguchi W, Hasegawa T, Kitazawa K 1994 Phys. Rev. Lett. 73 2103Google Scholar
[36] Law K, Lee P A 2017 Proc. Natl. Acad. Sci. 114 6996Google Scholar
[37] Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar
-
图 1 1T-NbSeTe的晶体结构表征 (a) 沿(001)方向的单晶X射线衍射结果; (b) 1T-NbSeTe晶体结构示意图; (c) SEM测试的形貌特征; (d) 1T-NbSeTe的能量色散X射线谱和元素原子比例
Fig. 1. Characterization of the 1T-NbSeTe sample: (a) X-ray diffraction pattern along (001); (b) illustration of the 1T-NbSeTe crystal structure; (c) scanning electron microscopy image of the sample surface; (d) energy dispersive X-ray spectroscopy and the element ratio.
图 3 1T-NbSeTe能带结构中的范霍夫奇点 (a)沿M-Γ-M方向的能带结构; (b)沿K-M-K方向的能带结构; (c) 布里渊区和高对称方向; (d)沿K-M-Γ方向的能带结构
Fig. 3. van Hove singularity in the band structure of 1T-NbSeTe: (a) Band structure along the M-Γ-M direction
; (b) band structure along the K-M-K direction; (c) Brillouin zone and the high symmetry directions; (d) band structure along the K-M-Γ direction. 图 4 不同高对称方向的能带色散 (a) K-Γ-K方向的能带结构; (b)在靠近费米能的低能区域((a)中蓝色虚线方框)通过MDC拟合提取的电子色散; (c), (d)与(a), (b)类似, 但沿着K-M-K方向; (e), (f)与(a), (b)类似, 但沿着M-Γ-M方向; (g)和(h)分别为高对称方向路径的实验结果与DFT计算结果
Fig. 4. Band dispersion along different high symmetry directions: (a) Band structure along the K-Γ-K direction; (b) extracted band dispersion by fitting MDCs in the low energy region near the Fermi level ((marked by the blue dashed box in (a)); (c), (d), same as (a), (b), but along the K-M-K direction; (e), (f), same as (a), (b), but along the M-Γ-M direction; (g) and (h) are the experimental results and DFT calculation results along the high symmetry directions, respectively.
-
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[3] Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar
[4] Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar
[7] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar
[8] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V, Cava R J 2008 Phys. Rev. B 78 104520Google Scholar
[9] Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E 2016 Nat. Commun. 7 11043Google Scholar
[10] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar
[11] Xi X, Berger H, Forro L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar
[12] Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T, Liu Z 2017 Nat. Commun. 8 394Google Scholar
[13] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar
[14] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar
[15] Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D, Renner C 2017 Phys. Rev. Lett. 118 017002Google Scholar
[16] Fan X, Chen H X, Zhao L L, Jin S F, Wang G 2019 Solid State Commun. 297 6Google Scholar
[17] Wang H T, Li L J, Ye D S, Cheng X H, Xu Z A 2007 Chin. Phys. 16 2471Google Scholar
[18] Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar
[19] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar
[20] Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G, Wehling T O 2018 J. Phys. Condens. Mat. 30 325601Google Scholar
[21] Naik I, Rastogi A K 2011 Pramana 76 957Google Scholar
[22] Yan D, Wang S, Lin Y S, Wang G H, Zeng Y, Boubeche M, He Y, Ma J, Wang Y H, Yao D X, Luo H X 2019 J. Phys. Condens. Mat. 32 025702Google Scholar
[23] Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar
[24] Tonjes W C, Greanya V A, Liu R, Olson C G, Molinie P 2001 Phys. Rev. B 63 235101Google Scholar
[25] Straub T, Finteis T, Claessen R, Steiner P, Hufner S, Blaha P, Oglesby C S, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar
[26] Neto A C 2001 Phys. Rev. Lett. 86 4382Google Scholar
[27] Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar
[28] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[29] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[31] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar
[32] Rahn D J, Hellmann S, Kallaene M, Sohrt C, Kim T K, Kipp L, Rossnagel K 2012 Phys. Rev. B 85 224532Google Scholar
[33] Rice T M, Scott G K 1975 Phys. Rev. Lett. 35 120Google Scholar
[34] Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar
[35] Kim J-J, Yamaguchi W, Hasegawa T, Kitazawa K 1994 Phys. Rev. Lett. 73 2103Google Scholar
[36] Law K, Lee P A 2017 Proc. Natl. Acad. Sci. 114 6996Google Scholar
[37] Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar
计量
- 文章访问数: 5171
- PDF下载量: 210
- 被引次数: 0