搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1T-NbSeTe电子结构的角分辨光电子能谱

魏志远 胡勇 曾令勇 李泽宇 乔振华 罗惠霞 何俊峰

引用本文:
Citation:

1T-NbSeTe电子结构的角分辨光电子能谱

魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰

Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe

Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng
PDF
HTML
导出引用
  • 过渡金属二硫族化物因其广泛存在超导、电荷密度波等新奇的物理现象成为了近些年来凝聚态物理研究中的一大热点, 同时这也为研究超导和电荷密度波等电子序之间的相互作用提供了典型的材料体系. 本文利用角分辨光电子能谱对1T结构的NbSeTe单晶进行系统的研究, 揭示了其电子结构. 沿高对称方向的能带测量发现, 1T-NbSeTe布里渊区M点附近存在一个范霍夫奇点, 能量位于费米能以下约250 meV处. 对能带色散的仔细分析发现该体系中没有明显电子-玻色子(声子)耦合带来的能带扭折. 基于上述实验结果, 对过渡金属二硫族化物中电荷密度波和超导的产生以及1T-NbSeTe中电荷密度波和超导被抑制的可能原因进行了讨论.
    Transition metal dichalcogenides (TMDs) have attracted a lot of interest in condensed matter physics research due to the existence of multiple novel physical phenomena, including superconductivity and charge density wave order, and also TMDs provide a unique window for studying the interactions between different ground states. In this work, the electronic structure of 1T-NbSeTe is systematically examined by angle-resolved photoemission spectroscopy (ARPES) for the first time. A van Hove singularity (VHS) is identified at the M point, with binding energy of 250 meV below the Fermi level. Careful analysis is carried out to examine the band dispersions along different high symmetry directions and the possible many-body effect. However, the dispersion kink—a characteristic feature of electron-boson coupling is not obvious in this system. In TMD materials, the van Hove singularity near the Fermi level and the electron-boson (phonon) coupling are suggested to play an important role in forming charge density wave (CDW) and superconductivity, respectively. In this sense, our experimental results may provide a direct explanation for the weakened CDW and relatively low superconducting transition temperature in 1T-NbSeTe. These results may also provide an insight into the charge-density-wave orders in the relevant material systems.
      通信作者: 胡勇, yonghphysics@gmail.com ; 乔振华, qiao@ustc.edu.cn ; 罗惠霞, luohx7@mail.sysu.edu.cn ; 何俊峰, jfhe@ustc.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: WK2030000035, WK3510000008)和中国科学技术大学启动经费资助的课题.
      Corresponding author: Hu Yong, yonghphysics@gmail.com ; Qiao Zhen-Hua, qiao@ustc.edu.cn ; Luo Hui-Xia, luohx7@mail.sysu.edu.cn ; He Jun-Feng, jfhe@ustc.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities (Grant Nos.WK2030000035, WK3510000008) and the USTC Start-up Fund.
    [1]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [3]

    Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar

    [4]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [5]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar

    [6]

    Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar

    [7]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar

    [8]

    Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V, Cava R J 2008 Phys. Rev. B 78 104520Google Scholar

    [9]

    Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E 2016 Nat. Commun. 7 11043Google Scholar

    [10]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [11]

    Xi X, Berger H, Forro L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar

    [12]

    Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T, Liu Z 2017 Nat. Commun. 8 394Google Scholar

    [13]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar

    [14]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [15]

    Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D, Renner C 2017 Phys. Rev. Lett. 118 017002Google Scholar

    [16]

    Fan X, Chen H X, Zhao L L, Jin S F, Wang G 2019 Solid State Commun. 297 6Google Scholar

    [17]

    Wang H T, Li L J, Ye D S, Cheng X H, Xu Z A 2007 Chin. Phys. 16 2471Google Scholar

    [18]

    Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar

    [19]

    Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar

    [20]

    Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G, Wehling T O 2018 J. Phys. Condens. Mat. 30 325601Google Scholar

    [21]

    Naik I, Rastogi A K 2011 Pramana 76 957Google Scholar

    [22]

    Yan D, Wang S, Lin Y S, Wang G H, Zeng Y, Boubeche M, He Y, Ma J, Wang Y H, Yao D X, Luo H X 2019 J. Phys. Condens. Mat. 32 025702Google Scholar

    [23]

    Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar

    [24]

    Tonjes W C, Greanya V A, Liu R, Olson C G, Molinie P 2001 Phys. Rev. B 63 235101Google Scholar

    [25]

    Straub T, Finteis T, Claessen R, Steiner P, Hufner S, Blaha P, Oglesby C S, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar

    [26]

    Neto A C 2001 Phys. Rev. Lett. 86 4382Google Scholar

    [27]

    Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar

    [28]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [32]

    Rahn D J, Hellmann S, Kallaene M, Sohrt C, Kim T K, Kipp L, Rossnagel K 2012 Phys. Rev. B 85 224532Google Scholar

    [33]

    Rice T M, Scott G K 1975 Phys. Rev. Lett. 35 120Google Scholar

    [34]

    Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar

    [35]

    Kim J-J, Yamaguchi W, Hasegawa T, Kitazawa K 1994 Phys. Rev. Lett. 73 2103Google Scholar

    [36]

    Law K, Lee P A 2017 Proc. Natl. Acad. Sci. 114 6996Google Scholar

    [37]

    Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar

  • 图 1  1T-NbSeTe的晶体结构表征 (a) 沿(001)方向的单晶X射线衍射结果; (b) 1T-NbSeTe晶体结构示意图; (c) SEM测试的形貌特征; (d) 1T-NbSeTe的能量色散X射线谱和元素原子比例

    Fig. 1.  Characterization of the 1T-NbSeTe sample: (a) X-ray diffraction pattern along (001); (b) illustration of the 1T-NbSeTe crystal structure; (c) scanning electron microscopy image of the sample surface; (d) energy dispersive X-ray spectroscopy and the element ratio.

    图 2  1T-NbSeTe的等能面 (a)费米面; (b)—(f)分别为费米面以下100, 200, 300, 400, 500 meV处的等能面

    Fig. 2.  Constant energy maps at different binding energies: (a) Fermi surface; (b)–(f) constant energy maps at 100, 200, 300, 400, 500 meV below the Fermi level, respectively.

    图 3  1T-NbSeTe能带结构中的范霍夫奇点 (a)沿M-Γ-M方向的能带结构; (b)沿K-M-K方向的能带结构; (c) 布里渊区和高对称方向; (d)沿K-M-Γ方向的能带结构

    Fig. 3.  van Hove singularity in the band structure of 1T-NbSeTe: (a) Band structure along the M-Γ-M direction; (b) band structure along the K-M-K direction; (c) Brillouin zone and the high symmetry directions; (d) band structure along the K-M-Γ direction.

    图 4  不同高对称方向的能带色散 (a) K-Γ-K方向的能带结构; (b)在靠近费米能的低能区域((a)中蓝色虚线方框)通过MDC拟合提取的电子色散; (c), (d)与(a), (b)类似, 但沿着K-M-K方向; (e), (f)与(a), (b)类似, 但沿着M-Γ-M方向; (g)和(h)分别为高对称方向路径的实验结果与DFT计算结果

    Fig. 4.  Band dispersion along different high symmetry directions: (a) Band structure along the K-Γ-K direction; (b) extracted band dispersion by fitting MDCs in the low energy region near the Fermi level ((marked by the blue dashed box in (a)); (c), (d), same as (a), (b), but along the K-M-K direction; (e), (f), same as (a), (b), but along the M-Γ-M direction; (g) and (h) are the experimental results and DFT calculation results along the high symmetry directions, respectively.

  • [1]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [3]

    Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar

    [4]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [5]

    Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar

    [6]

    Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar

    [7]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar

    [8]

    Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V, Cava R J 2008 Phys. Rev. B 78 104520Google Scholar

    [9]

    Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E 2016 Nat. Commun. 7 11043Google Scholar

    [10]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [11]

    Xi X, Berger H, Forro L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar

    [12]

    Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T, Liu Z 2017 Nat. Commun. 8 394Google Scholar

    [13]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar

    [14]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [15]

    Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D, Renner C 2017 Phys. Rev. Lett. 118 017002Google Scholar

    [16]

    Fan X, Chen H X, Zhao L L, Jin S F, Wang G 2019 Solid State Commun. 297 6Google Scholar

    [17]

    Wang H T, Li L J, Ye D S, Cheng X H, Xu Z A 2007 Chin. Phys. 16 2471Google Scholar

    [18]

    Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar

    [19]

    Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar

    [20]

    Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G, Wehling T O 2018 J. Phys. Condens. Mat. 30 325601Google Scholar

    [21]

    Naik I, Rastogi A K 2011 Pramana 76 957Google Scholar

    [22]

    Yan D, Wang S, Lin Y S, Wang G H, Zeng Y, Boubeche M, He Y, Ma J, Wang Y H, Yao D X, Luo H X 2019 J. Phys. Condens. Mat. 32 025702Google Scholar

    [23]

    Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar

    [24]

    Tonjes W C, Greanya V A, Liu R, Olson C G, Molinie P 2001 Phys. Rev. B 63 235101Google Scholar

    [25]

    Straub T, Finteis T, Claessen R, Steiner P, Hufner S, Blaha P, Oglesby C S, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar

    [26]

    Neto A C 2001 Phys. Rev. Lett. 86 4382Google Scholar

    [27]

    Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar

    [28]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [30]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [31]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [32]

    Rahn D J, Hellmann S, Kallaene M, Sohrt C, Kim T K, Kipp L, Rossnagel K 2012 Phys. Rev. B 85 224532Google Scholar

    [33]

    Rice T M, Scott G K 1975 Phys. Rev. Lett. 35 120Google Scholar

    [34]

    Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar

    [35]

    Kim J-J, Yamaguchi W, Hasegawa T, Kitazawa K 1994 Phys. Rev. Lett. 73 2103Google Scholar

    [36]

    Law K, Lee P A 2017 Proc. Natl. Acad. Sci. 114 6996Google Scholar

    [37]

    Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [3] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [4] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [5] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [6] 李智浩, 曹亮, 郭玉献. 苝四甲酸二酐薄膜电子结构的同步辐射共振光电子能谱研究. 物理学报, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [7] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究. 物理学报, 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [8] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [9] 杨志红, 施大宁, 罗达峰. 层间耦合与高温超导体角分辨光电子能谱和Ba位替代效应. 物理学报, 2004, 53(11): 3902-3908. doi: 10.7498/aps.53.3902
    [10] 徐世红, 陆尔东, 余小江, 潘海斌, 张发培, 徐彭寿. 稀土金属Sm/Si(100)2×1界面形成电子结构的同步辐射光电子能谱研究. 物理学报, 1996, 45(11): 1898-1904. doi: 10.7498/aps.45.1898
    [11] 陈艳, 董国胜, 张明, 金晓峰, 陆尔东, 潘海斌, 徐彭寿, 张新夷, 范朝阳. Mn/GaAs(100)界面电子结构的同步辐射光电子能谱研究. 物理学报, 1995, 44(1): 145-151. doi: 10.7498/aps.44.145
    [12] 张训生, 董峰, 鲍德松, 杜志强. NO在Cu(110)表面吸附的角分辨光电子能谱. 物理学报, 1993, 42(7): 1194-1198. doi: 10.7498/aps.42.1194
    [13] 鲍世宁, 徐熔, 李海洋, 朱立, 徐纯一, 徐亚伯. CO与K在Cu(111)面上共吸附的角分辨紫外光电子能谱. 物理学报, 1992, 41(3): 523-527. doi: 10.7498/aps.41.523
    [14] 钟战天, 王大文, 廖显伯, 范越, 李承芳, 牟善明. Au/a-Si:H界面X射线光电子能谱和俄歇电子能谱研究. 物理学报, 1991, 40(2): 275-280. doi: 10.7498/aps.40.275
    [15] 虞心南. Cu-Zr合金在氢气氛中退火后表面Cu沉积物的光电子能谱研究. 物理学报, 1991, 40(9): 1501-1504. doi: 10.7498/aps.40.1501
    [16] 屈卫星, 徐至展, 张文琦. 二阶离化过程对双光子自电离光电子能谱的影响. 物理学报, 1991, 40(5): 686-692. doi: 10.7498/aps.40.686
    [17] 鲍世宁, 朱立, 徐亚伯. CO在有K沉积的W(100)面上吸附的角分辨紫外光电子能谱. 物理学报, 1991, 40(11): 1888-1892. doi: 10.7498/aps.40.1888
    [18] 卢学坤, 侯晓远, 丁训民, 陈平. 用角分辨紫外光电子能谱研究GaP的能带结构. 物理学报, 1990, 39(8): 108-114. doi: 10.7498/aps.39.108
    [19] 吴柏枚, 陈兆甲, 鲍世宁, 鲍德松, 季振国, 刘古. 非晶Nb-Ni合金晶化过程中紫外光电子能谱研究. 物理学报, 1989, 38(4): 675-678. doi: 10.7498/aps.38.675
    [20] 赵良仲. Ce(Ⅳ)和Ce(Ⅲ)化合物系列的X射线光电子能谱研究. 物理学报, 1989, 38(6): 987-990. doi: 10.7498/aps.38.987
计量
  • 文章访问数:  5249
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-05-17
  • 上网日期:  2022-06-15
  • 刊出日期:  2022-06-20

/

返回文章
返回