搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氦原子非次序双电离对正交双色场强度比的依赖关系

童爱红 冯国强 邓永菊

引用本文:
Citation:

氦原子非次序双电离对正交双色场强度比的依赖关系

童爱红, 冯国强, 邓永菊

Dependence of nonsequential double ionization of He on intensity ratio of orthogonal two-color field

Tong Ai-Hong, Feng Guo-Qiang, Deng Yong-Ju
PDF
导出引用
  • 利用经典系综模型研究了正交双色场中氦原子非次序双电离对双色场强度比的依赖关系.研究表明, 该依赖关系与双色场相对相位有关. =0.25 时,沿长波长激光偏振方向的相关动量谱随强度比的增大从相关模式转变为反相关模式. =0.35, 0.45 时,相关动量主要分布在第一和第三象限,相关模式几乎不随强度比的变化而变化.对双电离轨迹碰撞时间、碰撞角、碰撞动量的向后分析可以解释上述结果,并显示了正交双色场对非次序双电离中碰撞时间、碰撞角的控制作用.
    Using classical ensemble model, the dependence of nonsequential double ionization of He on intensity ratio of orthogonal two-color field is investigated. It is shown that this dependence is related to the relative phase() of two-color pulse. When =0.25, with intensity ratio increasing, correlated momentum distribution along the polarization of long wavelength field changes from correlation to anticorrelation pattern; when =0.35, 0.45, correlated momenta are mainly distributed in the first and third quadrants, correlation pattern is nearly unchanged with the variation of intensity ratio. Back analyses of recollision time, recollision angle, recollision momentum of double ionization trajectories are responsible for the above results, and reveal the control of recollision time and the recollision angle in NSDI by orthogonally polarized two-color field.
    • 基金项目: 国家杰出青年科学基金(批准号: 6092521)资助的课题.
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. 60925021).
    [1]

    Walker B, Sheehy B, Dimauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [2]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658

    [3]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [4]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [5]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [6]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [7]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [8]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [9]

    Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002

    [10]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [11]

    Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611

    [12]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 775]

    [13]

    Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Dörner R, Corkum P B 2005 Phys. Rev. Lett. 95 203003

    [14]

    Liao Q, Lu P X 2009 Opt. Express 18 15550

    [15]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2011 Acta Phys. Sin. 60 043301 (in Chinese) [童爱红, 廖青, 周月明, 陆培祥 2011 物理学报 60 043301]

    [16]

    Huang C, Zhou Y M, Tong A H, Liao Hong Q Y, Lu P X 2011 Opt. Express 19 5627

    [17]

    Schumacher D W, Weihe F, Muller H G, Buchsbaum P H 1994 Phys. Rev. Lett. 73 1344

    [18]

    Telnov D A, Wang J Y, Chu S 1995 Phys. Rev. A 52 3988

    [19]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2007 Opt. Express 15 530

    [20]

    Lan P F, Lu P X, Li Q G, Li F, Hong W Y, Zhang Q B 2009 Phys. Rev. A 79 043413

    [21]

    Thompsony M R, Thomasy M K, Tadayz P F, Posthumusy J H, Langleyz A J, Frasinskiy L J, Codlingy K 1997 J. Phys. B 30 5755

    [22]

    Kitzler M, Lezius M 2005 Phys. Rev. Lett. 95 253001

    [23]

    Shafir D, Mairesse, Villeneuve D M, Corkum P B 2009 Nature Phys. 5 412

    [24]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2010 Opt. Express 19 2301

    [25]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [26]

    Panfili R, Haan S L, Eberly J H 2002 Phys. Rev. Lett. 89 113001

    [27]

    Ho P J, Eberly J H 2005 Phys. Rev. Lett. 95 193002

    [28]

    Haan S L, Dyke J S V, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [29]

    Haan S L, Breen L, Karim A, Eberly J H 2007 Opt. Express 15 767

    [30]

    Haan S L, Smith Z S, Shomsky K N, Plantinga P W 2009 J. Phys. B 42 134009

    [31]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [32]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007

  • [1]

    Walker B, Sheehy B, Dimauro L F, Agostini P, Schafer K J, Kulander K C 1994 Phys. Rev. Lett. 73 1227

    [2]

    Weber Th, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658

    [3]

    Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröter C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Höhr C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G, Sandner W 2001 Phys. Rev. Lett. 87 043003

    [4]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [5]

    Zhou Y M, Liao Q, Lu P X 2010 Phys. Rev. A 82 053402

    [6]

    Haan S L, Breen L, Karim A, Eberly J H 2006 Phys. Rev. Lett. 97 103008

    [7]

    Zhou Y M, Liao Q, Lu P X 2010 Opt. Express 18 16025

    [8]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [9]

    Staudte A, Ruiz C, Schöffler M, Schössler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A, Dörner R 2007 Phys. Rev. Lett. 99 263002

    [10]

    Liao Q, Lu P X, Zhang Q B, Yang Z Y, Wang X B 2008 Opt. Express 16 17070

    [11]

    Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611

    [12]

    Tang Q B, Zhang D L, Yu B H, Chen D 2010 Acta Phys. Sin. 59 775 (in Chinese) [汤清彬, 张东玲, 余本海, 陈东 2010 物理学报 59 775]

    [13]

    Zeidler D, Staudte A, Bardon A B, Villeneuve D M, Dörner R, Corkum P B 2005 Phys. Rev. Lett. 95 203003

    [14]

    Liao Q, Lu P X 2009 Opt. Express 18 15550

    [15]

    Tong A H, Liao Q, Zhou Y M, Lu P X 2011 Acta Phys. Sin. 60 043301 (in Chinese) [童爱红, 廖青, 周月明, 陆培祥 2011 物理学报 60 043301]

    [16]

    Huang C, Zhou Y M, Tong A H, Liao Hong Q Y, Lu P X 2011 Opt. Express 19 5627

    [17]

    Schumacher D W, Weihe F, Muller H G, Buchsbaum P H 1994 Phys. Rev. Lett. 73 1344

    [18]

    Telnov D A, Wang J Y, Chu S 1995 Phys. Rev. A 52 3988

    [19]

    Cao W, Lu P X, Lan P F, Wang X L, Yang G 2007 Opt. Express 15 530

    [20]

    Lan P F, Lu P X, Li Q G, Li F, Hong W Y, Zhang Q B 2009 Phys. Rev. A 79 043413

    [21]

    Thompsony M R, Thomasy M K, Tadayz P F, Posthumusy J H, Langleyz A J, Frasinskiy L J, Codlingy K 1997 J. Phys. B 30 5755

    [22]

    Kitzler M, Lezius M 2005 Phys. Rev. Lett. 95 253001

    [23]

    Shafir D, Mairesse, Villeneuve D M, Corkum P B 2009 Nature Phys. 5 412

    [24]

    Zhou Y M, Huang C, Tong A H, Liao Q, Lu P X 2010 Opt. Express 19 2301

    [25]

    Zhou Y M, Huang C, Liao Q, Hong W Y, Lu P X 2011 Opt. Lett. 36 2758

    [26]

    Panfili R, Haan S L, Eberly J H 2002 Phys. Rev. Lett. 89 113001

    [27]

    Ho P J, Eberly J H 2005 Phys. Rev. Lett. 95 193002

    [28]

    Haan S L, Dyke J S V, Smith Z S 2008 Phys. Rev. Lett. 101 113001

    [29]

    Haan S L, Breen L, Karim A, Eberly J H 2007 Opt. Express 15 767

    [30]

    Haan S L, Smith Z S, Shomsky K N, Plantinga P W 2009 J. Phys. B 42 134009

    [31]

    Zhou Y M, Liao Q, Lu P X 2009 Phys. Rev. A 80 023412

    [32]

    Wang X, Eberly J H 2009 Phys. Rev. Lett. 103 103007

  • [1] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2022, 71(3): 033401. doi: 10.7498/aps.71.20211308
    [2] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [3] 曾雪, 苏杰, 黄雪飞, 庞惠玲, 黄诚. 同向旋转双色圆偏场中非次序双电离的频率比依赖. 物理学报, 2021, 70(24): 243201. doi: 10.7498/aps.70.20211112
    [4] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [6] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析. 物理学报, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [7] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [8] 周春林, 邵剑雄, 陈熙萌, 高志民, 王俊, 孙光智, 席发元, 陈益峰, 陈林, 丁宝卫, 王兴安, 娄凤君, 徐俊奎, 邱玺玉, 王幡, 吕瑛. 强扰动能区非全裸Cq+,Oq+(q=1—4)与He原子碰撞过程中截面比的实验研究. 物理学报, 2009, 58(8): 5342-5349. doi: 10.7498/aps.58.5342
    [9] 卢义刚. 碰撞因子温度系数及克分子碰撞因子. 物理学报, 2008, 57(6): 3625-3628. doi: 10.7498/aps.57.3625
    [10] 赵峥, 刘文彪, 蒋亚铃. 黑洞碰撞的模拟. 物理学报, 2000, 49(3): 586-591. doi: 10.7498/aps.49.586
    [11] 方泉玉, 蔡 蔚, 邹 宇, 李 萍. 推广Bethe公式:Au50+离子的偶极激发的碰撞强度和速率系数. 物理学报, 1998, 47(10): 1612-1620. doi: 10.7498/aps.47.1612
    [12] 方泉玉, 蔡蔚, 邹宇, 李萍, 徐志瑾. Auq+(q=47,55)离子的电子碰撞强度与速率系数. 物理学报, 1997, 46(3): 448-457. doi: 10.7498/aps.46.448
    [13] 贺智勇, 李祖玉, 靳根明, 段利敏, 戴光曦, 吴和宇, 张保国, 文万信, 漆玉金, 罗清政. 核核碰撞中不稳定轻核的方位角各向异性发射. 物理学报, 1996, 45(9): 1438-1443. doi: 10.7498/aps.45.1438
    [14] 赵宗彦, 深町共荣, 吉沢正美, 江原健治, 中岛哲夫, 川村隆明. 测定异常散射因数的强度比法. 物理学报, 1991, 40(9): 1460-1467. doi: 10.7498/aps.40.1460
    [15] 张立敏, 楼立人, 郭常新, 马兴孝, 夏宇兴. K2分子23∏g—13∑u+漫射谱强度的碰撞诱导增强效应. 物理学报, 1990, 39(4): 518-525. doi: 10.7498/aps.39.518
    [16] 向天翔, 孙胜, 龚顺生, 王嘉铭. 态—态振动能量跃迁的时间分辨研究(Ⅰ)——碘分子的自碰撞过程. 物理学报, 1990, 39(10): 1547-1554. doi: 10.7498/aps.39.1547
    [17] 刘家瑞, 雷子明, 杨锋, 潘广炎, 于德洪, 孙湘. 单、双电荷离子与原子碰撞中的激发态和发射截面比较. 物理学报, 1988, 37(8): 1254-1259. doi: 10.7498/aps.37.1254
    [18] 雷子明, 杨锋, 刘家瑞, 潘广炎, 于德洪, 孙湘. 双电荷离子He2+与Ne,Ar原子碰撞中的激发态. 物理学报, 1988, 37(8): 1244-1253. doi: 10.7498/aps.37.1244
    [19] 仝晓民, 李家明. 高能离子原子碰撞. 物理学报, 1987, 36(6): 773-777. doi: 10.7498/aps.36.773
    [20] 蔡建华, 徐宏华. 双时间—温度格临函数的二元碰撞展开. 物理学报, 1965, 21(10): 1785-1797. doi: 10.7498/aps.21.1785
计量
  • 文章访问数:  4342
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-29
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

氦原子非次序双电离对正交双色场强度比的依赖关系

  • 1. 湖北第二师范学院, 物理与电子信息学院, 武汉 430205
    基金项目: 国家杰出青年科学基金(批准号: 6092521)资助的课题.

摘要: 利用经典系综模型研究了正交双色场中氦原子非次序双电离对双色场强度比的依赖关系.研究表明, 该依赖关系与双色场相对相位有关. =0.25 时,沿长波长激光偏振方向的相关动量谱随强度比的增大从相关模式转变为反相关模式. =0.35, 0.45 时,相关动量主要分布在第一和第三象限,相关模式几乎不随强度比的变化而变化.对双电离轨迹碰撞时间、碰撞角、碰撞动量的向后分析可以解释上述结果,并显示了正交双色场对非次序双电离中碰撞时间、碰撞角的控制作用.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回