搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究

周亚训 於杏燕 徐星辰 戴世勋

引用本文:
Citation:

掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究

周亚训, 於杏燕, 徐星辰, 戴世勋

Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber

Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun
PDF
导出引用
  • 为进一步揭示硫系玻璃基掺Er3+微结构光纤对于中红外波段信号的放大特性, 采用熔融淬火法研制了Er3+离子掺杂的Ga5Ge20Sb10S65硫系玻璃, 测试了玻璃样品的吸收光谱和2.7 m波段荧光光谱, 利用Judd-Ofelt和Futchbauer-Ladenburg理论分别计算得到了Er3+离子的辐射跃迁概率、辐射寿命以及2.7 m波段受激发射截面. 在此基础上, 建立了一个980 nm抽运下该玻璃基掺Er3+微结构光纤2.7 m波段中红外信号的放大模型, 理论上研究了其作为2.7 m波段中红外信号增益介质时的光放大特性. 结果显示, 硫系玻璃基掺Er3+微结构光纤具有优异的高增益和宽带放大品性. 在200 mW抽运功率激励下的100 cm光纤长度上, 最大小信号增益超过了40 dB, 高于30 dB信号增益的放大带宽达到了120 nm (26962816 nm). 研究表明, Ga5Ge20Sb10S65硫系玻璃基掺Er3+微结构光纤是一种理想的可应用于2.7 m波段中红外宽带放大器的增益介质.
    In order to demonstrate the characteristics of chalcogenide glass Er3+-doped microstructured optical fiber (MOF) amplifying the mid-infrared band signal, Er3+-doped Ga5Ge20Sb10S65 chalcogenide glass is prepared with high temperature melt-quenching method. The absorption spectrum and 2.7 m band fluorescence spectrum of glass sample are measured, and the spectroscopic parameters such as radiative transition probability, radiative lifetime and 2.7 m band stimulated emission cross-section of Er3+ ion are calculated and analyzed according to the Judd-Ofelt and Futchbauer-Ladenburg theories. The 2.7 m band mid-infrared signal amplifying model of Ga5Ge20Sb10S65 chalcogenide glass Er3+-doped MOF under the excitation of 980 nm is presented, and the amplifying characteristics of 2.7 m-band mid-infrared signals for chalcogenide glass Er3+-doped MOF are investigated theoretically. The results show that the chalcogenide glass Er3+-doped MOF exhibits a higher signal gain and very broad gain spectrum: its maximal gain of small signal exceeds 40 dB and amplifying bandwidth of higher than 30 dB gain reaches about 120 nm (26962816 nm) for a 100 cm long chalcogenide glass erbium-doped MOF with a pump power of 200 mW. The theoretical studies indicate that the Ga5Ge20Sb10S65 chalcogenide glass Er3+-doped MOF is an excellent gain medium which can be applied to broadband amplifiers in the mid-infrared wavelength region.
    • 基金项目: 国家自然科学基金(批准号: 61177087), 浙江省研究生创新科研项目(批准号: YK2010048), 宁波新型光电功能材料及器件创新团队项目(批准号: 2009B21007), 宁波大学王宽诚幸福基金和学科项目(批准号: XKL11078)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61177087), the Graduate Innovative Scientific Research Project of Zhejiang Province (Grant No. YK2010048), the Ningbo Optoelectronic Materials and Devices Creative Team (Grant No. 2009B21007), and the Sponsored by K. C. Wong Magna Fund and Subject Project of Ningbo University (Grant No. XKL11078).
    [1]

    Ma J Y, Fang X, Kamran M, Zhao H Y, Bi C Z, Zhao B R, Qiu X G 2008 Chin. Phys. B 17 3313

    [2]

    Guo H T, Lu M, Tao G M, Feng L, Peng B 2009 J. Chin. Ceram. Soc. 37 2150 (in Chinese) [郭海涛, 陆敏, 陶光明, 冯雷, 彭波 2009 硅酸盐学报 37 2150]

    [3]

    Gan F X 1991 J. Infrared Millim. W. 10 415 (in Chinese) [干福喜 1991 红外与毫米波学报 10 415]

    [4]

    Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G 2011 Acta Phys. Sin. 60 084217 (in Chinese) [宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈 祥, 王训四, 林常规 2011 物理学报 60 084217]

    [5]

    Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [6]

    El-Amraoui M, Gadret G, Jules J C, Fatome J, Fortier C, Désévédavy F, Skripatchev I, Messaddeq Y, Troles J, Brilland L, Gao W, Suzuki T, Ohishi Y, Smektala F 2010 Opt. Express 18 26655

    [7]

    Brilland L, Charpentier F, Troles J, Bureau B, Boussard-Plédel C, Adam J L, Méchin D, Trégoat D 2009 Proc. SPIE 7503 581

    [8]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 物理学报 59 3255]

    [9]

    Liu X Y, Zhang F D, Zhang M, Ye P D 2007 Acta Phys. Sin. 56 301 (in Chinese) [刘小毅, 张方迪, 张民, 叶培大 2007 物理学报 56 301]

    [10]

    Liu S, Li S G, Fu B, Zhou H S, Feng R P 2011 Acta Phys. Sin. 60 034217 (in Chinese) [刘硕, 李曙光, 付博, 周洪松, 冯荣普 2011 物理学报 60 034217]

    [11]

    De Sario, Mescia L, Prudenzano F, Smektala F, Deseveday F, Nazabal V, Troles J, Brilland L 2009 Opt. Fiber Technol. 41 99

    [12]

    Prudenzano F, Mescia L, Allegretti L, De Sario M, Smektala F, Moizan V, Nazabal V, Troles J, Doualan J L, Canat G, Adam J L, Boulard B 2009 Opt. Mater. 31 1292

    [13]

    Judd B R 1962 Phy. Rev. 127 750

    [14]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [15]

    Jiassi I, Elhouichet H, Ferid M, Barthou C 2010 J. Lumin. 130 2394

    [16]

    Hayashi H, Tanabe S, Sugimoto N 2008 J. Lumin. 128 333

    [17]

    Chen Y J, Huang Y D, Huang M L, Chen R P, Luo Z D 2004 Opt. Mater. 25 271

    [18]

    Tikhomirov V K, Méndez-Ramos J, Rodriguez V D, Furniss D, Seddon A B 2006 Opt. Mater. 28 1143

    [19]

    Jackson S D, King T A, Pollnau M 2000 J. Mod. Opt. 47 1987

    [20]

    Tian Y, Xu R R, Zhang L Y 2011 Opt. Lett. 36 109

    [21]

    Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [22]

    Kadono K, Yazawa T, Jiang S, Porque J, Hwang B C, Peyghambarian N 2003 J. Non-Crysta Solids 331 79

  • [1]

    Ma J Y, Fang X, Kamran M, Zhao H Y, Bi C Z, Zhao B R, Qiu X G 2008 Chin. Phys. B 17 3313

    [2]

    Guo H T, Lu M, Tao G M, Feng L, Peng B 2009 J. Chin. Ceram. Soc. 37 2150 (in Chinese) [郭海涛, 陆敏, 陶光明, 冯雷, 彭波 2009 硅酸盐学报 37 2150]

    [3]

    Gan F X 1991 J. Infrared Millim. W. 10 415 (in Chinese) [干福喜 1991 红外与毫米波学报 10 415]

    [4]

    Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G 2011 Acta Phys. Sin. 60 084217 (in Chinese) [宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈 祥, 王训四, 林常规 2011 物理学报 60 084217]

    [5]

    Nie Q H, Wang G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [6]

    El-Amraoui M, Gadret G, Jules J C, Fatome J, Fortier C, Désévédavy F, Skripatchev I, Messaddeq Y, Troles J, Brilland L, Gao W, Suzuki T, Ohishi Y, Smektala F 2010 Opt. Express 18 26655

    [7]

    Brilland L, Charpentier F, Troles J, Bureau B, Boussard-Plédel C, Adam J L, Méchin D, Trégoat D 2009 Proc. SPIE 7503 581

    [8]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 物理学报 59 3255]

    [9]

    Liu X Y, Zhang F D, Zhang M, Ye P D 2007 Acta Phys. Sin. 56 301 (in Chinese) [刘小毅, 张方迪, 张民, 叶培大 2007 物理学报 56 301]

    [10]

    Liu S, Li S G, Fu B, Zhou H S, Feng R P 2011 Acta Phys. Sin. 60 034217 (in Chinese) [刘硕, 李曙光, 付博, 周洪松, 冯荣普 2011 物理学报 60 034217]

    [11]

    De Sario, Mescia L, Prudenzano F, Smektala F, Deseveday F, Nazabal V, Troles J, Brilland L 2009 Opt. Fiber Technol. 41 99

    [12]

    Prudenzano F, Mescia L, Allegretti L, De Sario M, Smektala F, Moizan V, Nazabal V, Troles J, Doualan J L, Canat G, Adam J L, Boulard B 2009 Opt. Mater. 31 1292

    [13]

    Judd B R 1962 Phy. Rev. 127 750

    [14]

    Ofelt G S 1962 J. Chem. Phys. 37 511

    [15]

    Jiassi I, Elhouichet H, Ferid M, Barthou C 2010 J. Lumin. 130 2394

    [16]

    Hayashi H, Tanabe S, Sugimoto N 2008 J. Lumin. 128 333

    [17]

    Chen Y J, Huang Y D, Huang M L, Chen R P, Luo Z D 2004 Opt. Mater. 25 271

    [18]

    Tikhomirov V K, Méndez-Ramos J, Rodriguez V D, Furniss D, Seddon A B 2006 Opt. Mater. 28 1143

    [19]

    Jackson S D, King T A, Pollnau M 2000 J. Mod. Opt. 47 1987

    [20]

    Tian Y, Xu R R, Zhang L Y 2011 Opt. Lett. 36 109

    [21]

    Brechet F, Marcou J, Pagnoux D, Roy P 2000 Opt. Fiber Technol. 6 181

    [22]

    Kadono K, Yazawa T, Jiang S, Porque J, Hwang B C, Peyghambarian N 2003 J. Non-Crysta Solids 331 79

计量
  • 文章访问数:  6463
  • PDF下载量:  595
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-03
  • 修回日期:  2011-12-29
  • 刊出日期:  2012-08-05

/

返回文章
返回