搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图

赵建辉

引用本文:
Citation:

应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图

赵建辉

Ground state phase diagram of the quantum spin 1 Blume-Capel model: reduced density fidelity study

Zhao Jian-Hui
PDF
导出引用
  • 约化密度保真度(reduce density fidelity)可以用来描述量子多体系统的量子相变, 其是两个约化密度矩阵距离的度量.本文应用MERA (multi-scale entanglement reorganization ansatz) 算法, 模拟自旋为1的一维量子 Blume-Capel 模型, 并通过对约化密度保真度的计算, 确定出其基态相图.单点和两点约化密度矩阵所包含的至关重要的信息的量是不同的, 其会体现在约化密度保真度上.另外, 本文还从局域序参量和系统能隙的角度, 来探讨量子多体系统的相变.
    The reduced density fidelity is a measure of distance between two reduced density matrix, which can be used to characterize quantum phase transitions in quantum many-body systems. In this paper, we use the multi-scale entanglement reorganization ansatz (MERA) algorithm to simulate the spin 1 quantum Blume-Capel model and determine its ground-state phase diagram through calculating the reduced density fidelity. The qualitative relevant information contained in one site reduced density matrix is different from that contained two-site reduced density matrix, which can be detected by using the reduced density fidelity. In addition, we also characterize quantum phase transitions in quantum many-body systems by using the local parameters and energy gaps.
    • 基金项目: 重庆市博士后科研项目(批准号: CQXM201103019)资助的课题.
    • Funds: Project supported by the Chongqing Postdoctoral Sustentation Fund (Grant No. CQXM201103019).
    [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) p3

    [2]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [3]

    Amico L, Andreas Osterloh, Francesco Plastina, Rosario Fazio, Massimo Palma G 2004 Phys. Rev. A 69 022304

    [4]

    Tommaso Roscilde, Paola Verrucchi, Andrea Fubini, Stephan Haas, Valerio Tognetti 2004 Phys. Rev. Lett. 93 167203

    [5]

    Valerie Coffman, Joydip Kundu, Wootters W K 2000 Phys. Rev. A 61, 052306

    [6]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓, 陆文彬, 刘拥军 2008 物理学报 57 7267]

    [7]

    Vidal G 2007 Phys. Rev. Lett. 98 070201

    [8]

    Jordan J, Orus R, Vidal G, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 101 250602

    [9]

    Li B, Li S H, Zhou H Q 2009 Phys. Rev. B 79 060101(R)

    [10]

    Vidal G 2007 Phys. Rev. Lett. 99 220405

    [11]

    Evenbly G, Vidal G 2009 Phys. Rev. B 79 144108

    [12]

    Glen Evenbly, Guifre Vidal 2011 arXiv:1109.5334

    [13]

    Nightingale M P 1976 Physica A 83 561

    [14]

    Hu B, 1980 Phys. Rev. Lett. 75 A 372

    [15]

    Blume M, Emery V J, Griffiths R B 1971 Phys. Rev. A 4 1071

    [16]

    Alcaraz F C, Drugowich de Felicio J R, Stilck J F 1985 Phys. Rev. B 32 7469

    [17]

    Griffiths R B 1970 Phys. Rev. Lett. 24 715

    [18]

    Peliti L, Leiblen S 1984 Phys. Rev. B 29 1253

    [19]

    Hamber H 1980 Phys. Rev. B 21 3999

    [20]

    Blume M 1966 Phys. Rev. 141 517

    [21]

    Capel H W 1967 Physica 37 423

    [22]

    Zhou H Q, Barjaktarevic J P 2008 J. Phys. A: Math. Theor. 41 412001

    [23]

    Zhou H Q, Roman Orus, Guifre Vidal 2008 Physical Review Letters 100 080601

    [24]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press, Cambrige) p409

    [25]

    Zhao J H, Wang H L, Li B, Zhou H Q 2010 Physical Review E 82 061127

    [26]

    Liu J H, Shi Q Q, Zhao J H, Zhou H Q 2011 J. Phys. A: Math. Theor. 44 495302

    [27]

    Arizmendi C M, Epele L N, Fanchiotti, Garcia Canal C A 1986 Z. Phys. B Condensed Matter 64 231 235

    [28]

    Xavier J C, Alcaraz F C 2011 Phys. Rev. B 84 094410

    [29]

    Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) p601 (in Chinese) [冯端, 金国钧 2003 凝聚态物理学 (上卷) (北京: 高等教育出版社) 第601页]

  • [1]

    Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) p3

    [2]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [3]

    Amico L, Andreas Osterloh, Francesco Plastina, Rosario Fazio, Massimo Palma G 2004 Phys. Rev. A 69 022304

    [4]

    Tommaso Roscilde, Paola Verrucchi, Andrea Fubini, Stephan Haas, Valerio Tognetti 2004 Phys. Rev. Lett. 93 167203

    [5]

    Valerie Coffman, Joydip Kundu, Wootters W K 2000 Phys. Rev. A 61, 052306

    [6]

    Cai Z, Lu W B, Liu Y J 2008 Acta Phys. Sin. 57 7267 (in Chinese) [蔡卓, 陆文彬, 刘拥军 2008 物理学报 57 7267]

    [7]

    Vidal G 2007 Phys. Rev. Lett. 98 070201

    [8]

    Jordan J, Orus R, Vidal G, Verstraete F, Cirac J I 2008 Phys. Rev. Lett. 101 250602

    [9]

    Li B, Li S H, Zhou H Q 2009 Phys. Rev. B 79 060101(R)

    [10]

    Vidal G 2007 Phys. Rev. Lett. 99 220405

    [11]

    Evenbly G, Vidal G 2009 Phys. Rev. B 79 144108

    [12]

    Glen Evenbly, Guifre Vidal 2011 arXiv:1109.5334

    [13]

    Nightingale M P 1976 Physica A 83 561

    [14]

    Hu B, 1980 Phys. Rev. Lett. 75 A 372

    [15]

    Blume M, Emery V J, Griffiths R B 1971 Phys. Rev. A 4 1071

    [16]

    Alcaraz F C, Drugowich de Felicio J R, Stilck J F 1985 Phys. Rev. B 32 7469

    [17]

    Griffiths R B 1970 Phys. Rev. Lett. 24 715

    [18]

    Peliti L, Leiblen S 1984 Phys. Rev. B 29 1253

    [19]

    Hamber H 1980 Phys. Rev. B 21 3999

    [20]

    Blume M 1966 Phys. Rev. 141 517

    [21]

    Capel H W 1967 Physica 37 423

    [22]

    Zhou H Q, Barjaktarevic J P 2008 J. Phys. A: Math. Theor. 41 412001

    [23]

    Zhou H Q, Roman Orus, Guifre Vidal 2008 Physical Review Letters 100 080601

    [24]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press, Cambrige) p409

    [25]

    Zhao J H, Wang H L, Li B, Zhou H Q 2010 Physical Review E 82 061127

    [26]

    Liu J H, Shi Q Q, Zhao J H, Zhou H Q 2011 J. Phys. A: Math. Theor. 44 495302

    [27]

    Arizmendi C M, Epele L N, Fanchiotti, Garcia Canal C A 1986 Z. Phys. B Condensed Matter 64 231 235

    [28]

    Xavier J C, Alcaraz F C 2011 Phys. Rev. B 84 094410

    [29]

    Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) p601 (in Chinese) [冯端, 金国钧 2003 凝聚态物理学 (上卷) (北京: 高等教育出版社) 第601页]

  • [1] 周瑶瑶, 刘艳红, 闫智辉, 贾晓军. 多功能量子远程传态网络. 物理学报, 2021, 70(10): 104203. doi: 10.7498/aps.70.20201749
    [2] 石韬, 吕丽花, 李有泉. 量子中继过程中纠缠态的选择. 物理学报, 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [3] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [4] 任杰, 顾利萍, 尤文龙. 带有三体相互作用的S=1自旋链中的保真率和纠缠熵. 物理学报, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [5] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [6] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [7] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用. 物理学报, 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [8] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [9] 秦猛, 李延标, 白忠, 王晓. 不同方向Dzyaloshinskii-Moriya相互作用和磁场对自旋系统纠缠和保真度退相干的影响. 物理学报, 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [10] 张琳, 聂敏, 刘晓慧. 有噪量子信道生存函数研究及其仿真. 物理学报, 2013, 62(15): 150301. doi: 10.7498/aps.62.150301
    [11] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析. 物理学报, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [12] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [13] 郭振, 闫连山, 潘炜, 罗斌, 徐明峰. 量子纠缠消相干对确定型远程制备的影响. 物理学报, 2011, 60(6): 060301. doi: 10.7498/aps.60.060301
    [14] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度. 物理学报, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [15] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度. 物理学报, 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [16] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [17] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆. 物理学报, 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [18] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [19] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度. 物理学报, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
计量
  • 文章访问数:  5801
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-05-26
  • 刊出日期:  2012-11-05

应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图

  • 1. 重庆大学科学与工程博士后流动站, 重庆 400030
    基金项目: 重庆市博士后科研项目(批准号: CQXM201103019)资助的课题.

摘要: 约化密度保真度(reduce density fidelity)可以用来描述量子多体系统的量子相变, 其是两个约化密度矩阵距离的度量.本文应用MERA (multi-scale entanglement reorganization ansatz) 算法, 模拟自旋为1的一维量子 Blume-Capel 模型, 并通过对约化密度保真度的计算, 确定出其基态相图.单点和两点约化密度矩阵所包含的至关重要的信息的量是不同的, 其会体现在约化密度保真度上.另外, 本文还从局域序参量和系统能隙的角度, 来探讨量子多体系统的相变.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回