搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响

唐杰 杨梨容 王晓军 张林 魏成富 陈擘威 梅杨

引用本文:
Citation:

高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响

唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨

Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys

Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang
PDF
导出引用
  • 经配料、熔炼、制粉、成型和烧结后制备了 (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x (质量百分比)合金, 将该合金分别采用1.5 GPa和3.0 GPa的压强进行压制, 研究了此高压对其显微结构和磁性能的影响. 分析发现, 该块状合金承受的压强越高, 其外观和微观结构破坏越严重, 抗弯强度也会降低, 但高温抗氧化性能却有一定程度的提高. 与没有经过高压处理的磁体相比, 经过1.5 GPa和3.0 GPa高压的样品最大磁能积分别提高了7.69 kJ·m-3和0.94 kJ·m-3, 剩余磁通密度分别提高了0.02 T和0.01 T, 内禀矫顽力分别提高了20.06 kA·m-1和30.33 kA·m-1. 结果表明, 高压对块状NdFeB烧结磁体的显微结构和力学性能及磁性能均有一定的影响.
    According to nominal composition (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x(weight percentage), the sintered NdFeB magnets are prepared by melting processing, milling processing, moulding processing and sintering processing. Microstructures and properties of these bulk samples at different high pressures are tested. It is shown that with pressure increasing, appearance and microstructure of samples are destroyed, but their inoxidizability at high temperature is increased, although their flexure strength is badly reduced. On the other hand, there are more excellent magnetic properties of bulk NdFeB samples pressed at high pressures (1.5 GPa and 3.0 GPa) than those of this bulk samples without being pressed. For example, values of their maximum magnetic energy products are increased by 7.69 kJ·m-3 and 0.94 kJ·m-3 respectively, and values of their remanence are increased by 0.02 T and 0.01 T respectively, in addition, the values of their intrinsic coercive force are increased by 20.06 kA·m-1 and 30.33 kA·m-1 respectively. It is ind that high pressure has some effects on microstructure, mechanical and magnetic property of the bulk NdFeB alloy.
    • 基金项目: 四川省科技厅科技支撑计划(批准号: 2012JY0045, 2011SZZ029、四川省教育厅科研基金(批准号: 10ZA060, 11ZA161)、绵阳市科技局科研基金(批准号: 10Y002-4)和绵阳师范学院学科专项基金(批准号: 2011C02)资助的课题.
    • Funds: Project supported by the Key Technology Research and Development Program of the Department of Science and Technology of Sichuan Province, China (Grant Nos. 2012JY0045, 2011SZZ029), the Scientific Research Fundation of the Education Department of Sichuan Province, China (Grant Nos. 10ZA060, 11ZA161), the Key Project of Science and Technology Bureau of Mianyang Municipal, Sichuan Province, China (Grant No. 10Y002-4), and the Special Project of MianYang Normal Universty (Grant No. 2011C02).
    [1]

    Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese) [孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 61 107101]

    [2]

    Hyo Jun Kim, Dong Hwan Kim, Andrew S Kim, Sang Myun Kim, Chang Seop Koh, Gyu-Hong Kang 2006 J. Iron Steel Research, International 13 411

    [3]

    Basak A, Anayi F J 1992 J. Magn. Magn. Mate. 112 426

    [4]

    Slusarek B, Dudzikowski I 2002 J. Magn. Magn. 239 597

    [5]

    Li H, Chen Z 2009 Renew Energ 34 1175

    [6]

    Guo F, Tang Y, Ren L, Li J 2010 Physica C: Superconductivity 470 1787

    [7]

    Zhang L C, Wang J S, He Q Y, Zhang J H, Wang S Y 2007 Physica C: Superconductivity 459 33

    [8]

    Singh A K, Liermann H P, Akahama Y, Saxena S K, Menendez-Proupin E 2007 J. Appl. Phys. 101 123526

    [9]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, MarshallW G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [10]

    Guan J W, He D W, Wang W D, Wang H K, Peng F, Xu C, Wang K X, He K 2012 Acta Phys. Sin. 61 100701 (in Chinese) [管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯 2012 物理学报 61 100701]

    [11]

    Dunstan D J 1989 Rev. Sci. Instrum. 60 3789

    [12]

    Grnberger W, Hinz D, Schläfer D, Schultz L 1996 J. Magn. Magn. Mater. 157-158 41

    [13]

    Wei C F, Tang J, Yang L R, Zhao D W 2011 J. Magn. Mater. Device 42 22 (in Chinese) [魏成富, 唐杰, 张林, 杨梨容, 赵导文 2011 磁性材料及器件 42 20]

    [14]

    Buschow K H J 1986 Materials Science Reports 1 1

    [15]

    Gao R W, Zhang D H, Li W, Zhang J C 2000 J. Magn. Magn. Mater. 208 239

    [16]

    Mendoza-Suárez G, Davies H A, Escalante-Garcíi J I 2000 J. Magn. Magn. Mater. 218 97

    [17]

    Kronmller H, Durst K D, Sagawa M 1998 J. Magn. Magn. Mater. 74 291

    [18]

    Kronmller H 2001 Encyclopedia of Materials: Science and Technology 2 1295

    [19]

    Forkl A, Pastushenkov J, Maki K, Kronmller H 1991 J. Magn. Magn. Mater. 101 367

    [20]

    Martinek G, Kronmller H 1990 J. Magn. Magn. Mater. 86 177

    [21]

    Blank R 1991 J. Magn. Magn. Mater. 101 317

    [22]

    Pan M X, Zhang P Y, Li X J, Ge H L, Wu Q Jiao Z W, Liu T T 2010 J. Rare Earth 28 399

    [23]

    Mo W J, Zhang L T, Liu Q Z, Shan A D, Wu J S, Matahiro Komuro, Shen L P 2008 J. Rare Earth 26 268

    [24]

    Minowa T, Shimao M, Honshima M 1991 J. Magn. Magn. Mater. 97 107

    [25]

    Yang J P, Pi S H, Kim Y P 1992 J. Magn. Magn. Mater. 110 L261

    [26]

    Jin Z Z, Bao Y W 1996 Designing and Evaluating on Mechanical Property of Fragile Material (Beijing: China Railway Press) p143 (in Chinese) [金宗哲, 包亦望 1996 脆性材料力学性能设计与评价 (北京: 中国铁路出版社)第143页]

  • [1]

    Meng Z H, Li J B, Guo Y Q, Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese) [孟振华, 李俊斌, 郭永权, 王义 2012 物理学报 61 107101]

    [2]

    Hyo Jun Kim, Dong Hwan Kim, Andrew S Kim, Sang Myun Kim, Chang Seop Koh, Gyu-Hong Kang 2006 J. Iron Steel Research, International 13 411

    [3]

    Basak A, Anayi F J 1992 J. Magn. Magn. Mate. 112 426

    [4]

    Slusarek B, Dudzikowski I 2002 J. Magn. Magn. 239 597

    [5]

    Li H, Chen Z 2009 Renew Energ 34 1175

    [6]

    Guo F, Tang Y, Ren L, Li J 2010 Physica C: Superconductivity 470 1787

    [7]

    Zhang L C, Wang J S, He Q Y, Zhang J H, Wang S Y 2007 Physica C: Superconductivity 459 33

    [8]

    Singh A K, Liermann H P, Akahama Y, Saxena S K, Menendez-Proupin E 2007 J. Appl. Phys. 101 123526

    [9]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, MarshallW G, Wilson R M 1995 Appl. Phys. Lett. 66 1735

    [10]

    Guan J W, He D W, Wang W D, Wang H K, Peng F, Xu C, Wang K X, He K 2012 Acta Phys. Sin. 61 100701 (in Chinese) [管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯 2012 物理学报 61 100701]

    [11]

    Dunstan D J 1989 Rev. Sci. Instrum. 60 3789

    [12]

    Grnberger W, Hinz D, Schläfer D, Schultz L 1996 J. Magn. Magn. Mater. 157-158 41

    [13]

    Wei C F, Tang J, Yang L R, Zhao D W 2011 J. Magn. Mater. Device 42 22 (in Chinese) [魏成富, 唐杰, 张林, 杨梨容, 赵导文 2011 磁性材料及器件 42 20]

    [14]

    Buschow K H J 1986 Materials Science Reports 1 1

    [15]

    Gao R W, Zhang D H, Li W, Zhang J C 2000 J. Magn. Magn. Mater. 208 239

    [16]

    Mendoza-Suárez G, Davies H A, Escalante-Garcíi J I 2000 J. Magn. Magn. Mater. 218 97

    [17]

    Kronmller H, Durst K D, Sagawa M 1998 J. Magn. Magn. Mater. 74 291

    [18]

    Kronmller H 2001 Encyclopedia of Materials: Science and Technology 2 1295

    [19]

    Forkl A, Pastushenkov J, Maki K, Kronmller H 1991 J. Magn. Magn. Mater. 101 367

    [20]

    Martinek G, Kronmller H 1990 J. Magn. Magn. Mater. 86 177

    [21]

    Blank R 1991 J. Magn. Magn. Mater. 101 317

    [22]

    Pan M X, Zhang P Y, Li X J, Ge H L, Wu Q Jiao Z W, Liu T T 2010 J. Rare Earth 28 399

    [23]

    Mo W J, Zhang L T, Liu Q Z, Shan A D, Wu J S, Matahiro Komuro, Shen L P 2008 J. Rare Earth 26 268

    [24]

    Minowa T, Shimao M, Honshima M 1991 J. Magn. Magn. Mater. 97 107

    [25]

    Yang J P, Pi S H, Kim Y P 1992 J. Magn. Magn. Mater. 110 L261

    [26]

    Jin Z Z, Bao Y W 1996 Designing and Evaluating on Mechanical Property of Fragile Material (Beijing: China Railway Press) p143 (in Chinese) [金宗哲, 包亦望 1996 脆性材料力学性能设计与评价 (北京: 中国铁路出版社)第143页]

  • [1] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC微粒对Ti-6Al-4V合金微弧氧化层结构和性能的影响. 物理学报, 2022, 71(2): 028102. doi: 10.7498/aps.71.20210835
    [2] 丁智松, 高巍, 魏敬鹏, 金耀华, 赵晨, 杨巍. TaC 微粒对 Ti-6Al-4V 合金微弧氧化层结构和性能的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210835
    [3] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [4] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究. 物理学报, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [5] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [7] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [9] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [10] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [11] 张强, 朱小红, 徐云辉, 肖云军, 高浩濒, 梁大云, 朱基亮, 朱建国, 肖定全. Mn4+掺杂对BiFeO3陶瓷微观结构和电学性能的影响研究. 物理学报, 2012, 61(14): 142301. doi: 10.7498/aps.61.142301
    [12] 王永军, 李红轩, 吉利, 刘晓红, 吴艳霞, 周惠娣, 陈建敏. 非平衡磁控溅射制备类石墨碳膜及性能研究. 物理学报, 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [13] 孙光爱, 陈波, 吴二冬, 闫冠云, 黄朝强, 李武会, 吴忠华, 柳义, 王劼. 蠕变镍基单晶高温合金微观结构与界面特征的X射线小角散射研究. 物理学报, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [14] 王德义, 高书霞, 李刚, 赵鸣. 溶胶-凝胶法制备Li-N双掺p型ZnO薄膜的结构、光学和电学性能. 物理学报, 2010, 59(5): 3473-3480. doi: 10.7498/aps.59.3473
    [15] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [16] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [17] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [18] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [19] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响. 物理学报, 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [20] 成问好, 李卫, 李传健, 潘伟. 烧结Nd-Fe-B磁体的磁性能一致性与其微观结构的关系. 物理学报, 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
计量
  • 文章访问数:  5464
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-03
  • 修回日期:  2012-07-10
  • 刊出日期:  2012-12-05

高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响

  • 1. 绵阳师范学院化学与化学工程学院, 绵阳 621000;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
    基金项目: 四川省科技厅科技支撑计划(批准号: 2012JY0045, 2011SZZ029、四川省教育厅科研基金(批准号: 10ZA060, 11ZA161)、绵阳市科技局科研基金(批准号: 10Y002-4)和绵阳师范学院学科专项基金(批准号: 2011C02)资助的课题.

摘要: 经配料、熔炼、制粉、成型和烧结后制备了 (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x (质量百分比)合金, 将该合金分别采用1.5 GPa和3.0 GPa的压强进行压制, 研究了此高压对其显微结构和磁性能的影响. 分析发现, 该块状合金承受的压强越高, 其外观和微观结构破坏越严重, 抗弯强度也会降低, 但高温抗氧化性能却有一定程度的提高. 与没有经过高压处理的磁体相比, 经过1.5 GPa和3.0 GPa高压的样品最大磁能积分别提高了7.69 kJ·m-3和0.94 kJ·m-3, 剩余磁通密度分别提高了0.02 T和0.01 T, 内禀矫顽力分别提高了20.06 kA·m-1和30.33 kA·m-1. 结果表明, 高压对块状NdFeB烧结磁体的显微结构和力学性能及磁性能均有一定的影响.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回