搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴冲击液膜问题的光滑粒子动力学模拟

马理强 刘谋斌 常建忠 苏铁熊 刘汉涛

引用本文:
Citation:

液滴冲击液膜问题的光滑粒子动力学模拟

马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛

Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics

Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao
PDF
导出引用
  • 本文对传统的光滑粒子动力学方法进行了改进. 改进的光滑粒子动力学方法对传统粒子方法中的核梯度进行了修正, 采用了一种新型的耦合边界条件, 添加了表面张力和人工应力的计算程序. 应用改进的光滑粒子动力学方法对液滴冲击液膜问题进行了数值模拟. 得到了不同时刻液滴内部的压力变化特征, 精细地捕捉了不同时刻的自由面, 从机理上分析了液滴产生飞溅的条件, 探讨了韦伯数, 表面张力对液滴冲击液膜问题的影响. 计算结果表明, 改进光滑粒子动力学方法能够有效地描述液滴冲击液膜的动力学特性和自由表面变化特征, 能够得到稳定精度的结果.
    In this paper, we present a modified smoothed particle hydrodynamics (SPH) method. In order to well predict the morphology change of liquid drop, the presented SPH method employs a kernel gradient correction and a coupled solid boundary treatment algorithm. An inter-particle interaction force is used to model surface tension, and an artificial stress model is used to deal with tensile instability. The process of droplet impacting on liquid film is numerically simulated by the modified SPH method, which can well predict the pressure field evolution process of the drop impacting onto the liquid film and capture the variation of the free surface at different instants. Effects of Web number and surface stress on droplet impacting are also investigated, and mechanism of droplet splashing is analyzed. It is clearly demonstrated that the modified SPH method can effectively describe the dynamics of droplet splashing and the variation of the free surface. The obtained liquid drop morphology accords well with the results from other sources.
    • 基金项目: 国家自然科学基金(批准号: 50976108, 11172306)和山西省人才专项基金(批准号: 20060403JJ)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50976108, 11172306), and the Shanxi Provincial Foundation for Talent, China (Grant No. 20060403JJ).
    [1]

    Wright A C 1986 Earth. Surf. Proc. Land. 11 351

    [2]

    Fedorchenko A I, Wang A B 2004 Phys. Fluids. 16 1349

    [3]

    Yarin A L 2006 Annu. Rev. Fluid. Mech. 38 159

    [4]

    Worthington A M 1876 Proc. R. Soc. Lond. 25 261

    [5]

    Walzel P 1980 Chem-ing-tech. 52 338

    [6]

    Rein M 1993 Fluid. Dyn. Res. 12 61

    [7]

    Thoroddsen S T, Etoh T G, Takehara K, Ootsuka N, Hatsuki A 2005 J. Fluid. Mech. 545 203

    [8]

    Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids. 22 463

    [9]

    Wang A B, Chen C C 2000 Phys. Fluids. 12 2155

    [10]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 物理学报 59 2601]

    [11]

    Sulsky D, Zhou S J, Schreyer H L 1995 Comput. Phys. Commun. 87 236

    [12]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [13]

    Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146

    [14]

    Koshizuka S, Nobe A, Oka Y 1998 Int. J. Numer. Meth. Fl. 26 751

    [15]

    Lee T, Lin C L 2005 J. Comput. Phys. 206 16

    [16]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids. 18 017101

    [17]

    Harlow F H, Shannon J P 1967 J. Appl. Phys. 38 3855

    [18]

    Prosperetti A, Oguz H N 1993 Annu. Rev. Fluid. Mech. 25 577

    [19]

    Xie H, Koshizuka S, Oka Y 2004 Int. J. Numer. Meth. Fl. 45 1009

    [20]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 60 054701(in Chinese) [蒋涛, 欧阳洁, 赵晓凯, 任金莲 2011 物理学报 60 054701]

    [21]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [22]

    Liu M B, Liu G R, Zong Z, Lam K Y 2003 Comput. Fluids. 32 305

    [23]

    Liu M B, Liu G R, Zong Z 2008 Int. J. Comp. Meth-Sing 5 135

    [24]

    Lucy L B 1977 Astron. J. 82 1013

    [25]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [26]

    Liu M B, Liu G R 2010 Arch. Comput. Method. E 17 25

    [27]

    Zhang S, Morita K, Fukuda K, Shirakawa N 2007 Int. J. Numer. Meth. Fl. 55 225

    [28]

    Liu M B, Liu G R 2005 Comput. Mech. 35 332

    [29]

    Tartakovsky A, Meakin P 2005 Phys. Rev. E 72 026301

    [30]

    Liu M B, Shao J R, Chang J Z 2012 Sci. China Ser. E 55 1

    [31]

    Kourosh 2011 ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011)

    [32]

    Monaghan J J 2000 J. Comput. Phys. 159 290

  • [1]

    Wright A C 1986 Earth. Surf. Proc. Land. 11 351

    [2]

    Fedorchenko A I, Wang A B 2004 Phys. Fluids. 16 1349

    [3]

    Yarin A L 2006 Annu. Rev. Fluid. Mech. 38 159

    [4]

    Worthington A M 1876 Proc. R. Soc. Lond. 25 261

    [5]

    Walzel P 1980 Chem-ing-tech. 52 338

    [6]

    Rein M 1993 Fluid. Dyn. Res. 12 61

    [7]

    Thoroddsen S T, Etoh T G, Takehara K, Ootsuka N, Hatsuki A 2005 J. Fluid. Mech. 545 203

    [8]

    Cossali G E, Coghe A, Marengo M 1997 Exp. Fluids. 22 463

    [9]

    Wang A B, Chen C C 2000 Phys. Fluids. 12 2155

    [10]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese) [郭加宏, 戴世强, 代钦 2010 物理学报 59 2601]

    [11]

    Sulsky D, Zhou S J, Schreyer H L 1995 Comput. Phys. Commun. 87 236

    [12]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [13]

    Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146

    [14]

    Koshizuka S, Nobe A, Oka Y 1998 Int. J. Numer. Meth. Fl. 26 751

    [15]

    Lee T, Lin C L 2005 J. Comput. Phys. 206 16

    [16]

    Liu M B, Meakin P, Huang H 2006 Phys. Fluids. 18 017101

    [17]

    Harlow F H, Shannon J P 1967 J. Appl. Phys. 38 3855

    [18]

    Prosperetti A, Oguz H N 1993 Annu. Rev. Fluid. Mech. 25 577

    [19]

    Xie H, Koshizuka S, Oka Y 2004 Int. J. Numer. Meth. Fl. 45 1009

    [20]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 60 054701(in Chinese) [蒋涛, 欧阳洁, 赵晓凯, 任金莲 2011 物理学报 60 054701]

    [21]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [22]

    Liu M B, Liu G R, Zong Z, Lam K Y 2003 Comput. Fluids. 32 305

    [23]

    Liu M B, Liu G R, Zong Z 2008 Int. J. Comp. Meth-Sing 5 135

    [24]

    Lucy L B 1977 Astron. J. 82 1013

    [25]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [26]

    Liu M B, Liu G R 2010 Arch. Comput. Method. E 17 25

    [27]

    Zhang S, Morita K, Fukuda K, Shirakawa N 2007 Int. J. Numer. Meth. Fl. 55 225

    [28]

    Liu M B, Liu G R 2005 Comput. Mech. 35 332

    [29]

    Tartakovsky A, Meakin P 2005 Phys. Rev. E 72 026301

    [30]

    Liu M B, Shao J R, Chang J Z 2012 Sci. China Ser. E 55 1

    [31]

    Kourosh 2011 ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2011)

    [32]

    Monaghan J J 2000 J. Comput. Phys. 159 290

计量
  • 文章访问数:  6354
  • PDF下载量:  950
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-31
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-12-05

液滴冲击液膜问题的光滑粒子动力学模拟

  • 1. 中北大学机电工程学院, 太原 030051;
  • 2. 中国科学院力学研究所, 北京 100190
    基金项目: 国家自然科学基金(批准号: 50976108, 11172306)和山西省人才专项基金(批准号: 20060403JJ)资助的课题.

摘要: 本文对传统的光滑粒子动力学方法进行了改进. 改进的光滑粒子动力学方法对传统粒子方法中的核梯度进行了修正, 采用了一种新型的耦合边界条件, 添加了表面张力和人工应力的计算程序. 应用改进的光滑粒子动力学方法对液滴冲击液膜问题进行了数值模拟. 得到了不同时刻液滴内部的压力变化特征, 精细地捕捉了不同时刻的自由面, 从机理上分析了液滴产生飞溅的条件, 探讨了韦伯数, 表面张力对液滴冲击液膜问题的影响. 计算结果表明, 改进光滑粒子动力学方法能够有效地描述液滴冲击液膜的动力学特性和自由表面变化特征, 能够得到稳定精度的结果.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回