搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米带卷曲效应对其电子特性的影响

李骏 张振华 王成志 邓小清 范志强

引用本文:
Citation:

石墨烯纳米带卷曲效应对其电子特性的影响

李骏, 张振华, 王成志, 邓小清, 范志强

Rolling effects on electronic characteristics for graphene nanoribbons

Li Jun, Zhang Zhen-Hua, Wang Chen-Zhi, Deng Xiao-Qing, Fan Zhi-Qiang
PDF
导出引用
  • 石墨烯纳米带 (GNRs) 是一种重要的纳米材料, 碳纳米管可看作是GNRs卷曲而成的无缝圆筒. 利用基于密度泛函理论的第一性原理方法, 系统研究了GNRs卷曲变形到不同几何构型时, 其电子特性, 包括能带结构 (特别是带隙) 、态密度、透射谱的变化规律. 结果表明: 无论是锯齿型GNRs (ZGNRs) 或扶手椅型GNRs (AGNRs), 在其卷曲成管之前, 其电子特性对卷曲形变均不敏感, 这意味着GNRs的电子结构及输运特性有较强地抵抗卷曲变形的能力. 当GNRs 卷曲成管后, ZGNRs和AGNRs表现出完全不同的性质, ZGNRs几乎保持金属性不变或变为准金属; 但AGNRs的电子特性有较大的变化, 出现不同带隙半导体、准金属之间的转变, 这也许密切关系到碳纳米管管口周长方向上的周期性边界条件及量子禁锢的改变. 这些研究对于了解GNRs电子特性的卷曲效应、以及GNRs与碳纳米管电子特性的关系 (结构与特性的关系) 有重要意义.
    Graphene nanoribbons (GNRs) are important nanomaterials. A carbon nanotube can be viewed as a GNR rolled into a seamless cylinder. By using the first-principles method based on the density-functional theory, the rolling deformation-dependent electronic characteristics of GNRs, including the band structure (particularly the bandgap), density of states (DOS), and transmission spectrum, are studied systematically. It is found that before all types of GNRs are rolled into carbon nanotubes, they are not sensitive to the rolling deformations, which means that for electronic structures and transport properties, GNRs have a very strong ability to resist the rolling deformations. After GNRs are rolled into nanotubes, zigzag-edge GNRs (ZGNRs) and armchair-edge GNRs (AGNRs) present distinct differences in property, ZGNRs almost maintain unchanged metallic behaviors or become quasi-metallic. But for AGNRs, their electronic characteristics experience large variations, and transformations occur between the quasi-metal and semiconductor with various bandgaps, which might be closely related to the periodical boundary conduction along the direction of tubular circumference of a carbon nanotube and variation of quantum confinement. These studies presented here are of significance for understanding the rolling effects on electronic characteristic and relationship of electronic characteristics between GNRs and carbon nanotubes (structure-property relationship).
    • 基金项目: 国家自然科学基金 (批准号: 61071015, 61101009, 61201080)、湖南省教育厅重点科研项目(批准号: 12A001)、湖南省重点学科建设项目和湖南省高校科技创新团队支持计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071015, 61101009, 61201080), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 12A001), the Construct Program of the Key Discipline in Hunan Province, and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.
    [1]

    Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606

    [2]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [3]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter. 21 235501

    [4]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [5]

    Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802

    [6]

    Ouyang F P, Xu H, Lin F 2009 Acta phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [7]

    Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129

    [8]

    Yuan J M, Mao Y L 2011 Acta phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 物理学报 60 103103]

    [9]

    Wang X M, Liu H 2011 Acta phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [10]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [11]

    Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265

    [12]

    Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704

    [13]

    Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102

    [14]

    Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494

    [15]

    Ong Z, Fischetti M V 2012 Phys. Rev. B 86 165422

    [16]

    Tani S, Blanchard F, Tanaka K 2012 Phys. Rev. Lett. 109 166603

    [17]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [18]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [19]

    Balog R, Jorgensen B, Nilsson L 2010 Nat. Mater. 9 315

    [20]

    Zhou J, Wang Q, Sun Q X S, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [21]

    Panchakarla' L S, Subrahmanyam K S, Saha S K 2009 Adv. Mater. 21 4726

    [22]

    Xu Z, Buehler M J 2010 ACS Nano 4 3869

    [23]

    Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501

    [24]

    Taylor J, Guo H, Wang 2001J. Phys. Rev. B 63 245407

    [25]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [26]

    Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032

    [27]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [28]

    Blase X, Bendict L X, Shirley E L 1994 Phys. Rev. Lett. 72 1878

  • [1]

    Zeng J, Chen K Q, He J, Zhang X J, Hu W P 2011 Organic Electronics 12 1606

    [2]

    Zeng J, Chen K Q, He J, Fan Z Q, Zhang X J 2011 J. Appl. Phys. 109 124502

    [3]

    Yao Y X, Wang C Z, Zhang G P, Ji M, Ho K M 2009 J. Phys.: Condens. Matter. 21 235501

    [4]

    Son Y, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [5]

    Li Z, Qian H, Wu J, Gu B, Duan W 2008 Phys. Rev. Lett. 100 206802

    [6]

    Ouyang F P, Xu H, Lin F 2009 Acta phys. Sin. 58 4132 (in Chinese) [欧阳方平, 徐慧, 林峰 2009 物理学报 58 4132]

    [7]

    Zheng X H, Song L L Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129

    [8]

    Yuan J M, Mao Y L 2011 Acta phys. Sin. 60 103103 (in Chinese) [袁健美, 毛宇亮 2011 物理学报 60 103103]

    [9]

    Wang X M, Liu H 2011 Acta phys. Sin. 60 047102 (in Chinese) [王雪梅, 刘红 2011 物理学报 60 047102]

    [10]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [11]

    Wang J J, Zhu M Y, Outlaw R A, Zhao X, Manos D M, Holloway B C, Mammana V P 2004 Appl. Phys. Lett. 85 1265

    [12]

    Sun L, Li Q X, Ren H, Su H B, Shi Q W, Yang J L 2008 J. Chem. Phys. 129 074704

    [13]

    Sadrzadeh A, Hua M, Boris I Y 2011 Appl. Phys. Lett. 99 013102

    [14]

    Zhu L Y, Wang J L, Zhang T T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494

    [15]

    Ong Z, Fischetti M V 2012 Phys. Rev. B 86 165422

    [16]

    Tani S, Blanchard F, Tanaka K 2012 Phys. Rev. Lett. 109 166603

    [17]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [18]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [19]

    Balog R, Jorgensen B, Nilsson L 2010 Nat. Mater. 9 315

    [20]

    Zhou J, Wang Q, Sun Q X S, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867

    [21]

    Panchakarla' L S, Subrahmanyam K S, Saha S K 2009 Adv. Mater. 21 4726

    [22]

    Xu Z, Buehler M J 2010 ACS Nano 4 3869

    [23]

    Shenoy V B, Reddy C D, Ramasubramaniam A, Zhang Y W 2008 Phys. Rev. Lett. 101 245501

    [24]

    Taylor J, Guo H, Wang 2001J. Phys. Rev. B 63 245407

    [25]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [26]

    Zeng J, Chen K Q, Sun C Q 2012 Phys. Chem. Chem. Phys. 14 8032

    [27]

    Saito R, Fujita M, Dresselhaus G, Dresselhaus M S 1992 Appl. Phys. Lett. 60 2204

    [28]

    Blase X, Bendict L X, Shirley E L 1994 Phys. Rev. Lett. 72 1878

  • [1] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [2] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [4] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [5] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [6] 张华林, 孙琳, 韩佳凝. 掺杂三角形硼氮片的锯齿型石墨烯纳米带的磁电子学性质. 物理学报, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [7] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [8] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [9] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性. 物理学报, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [11] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [12] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [13] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [14] 陶强, 胡小颖, 朱品文. 羟基饱和锯齿型石墨烯纳米带的电子结构. 物理学报, 2011, 60(9): 097301. doi: 10.7498/aps.60.097301
    [15] 秦威, 张振华, 刘新海. 卷曲效应对单壁碳纳米管电子结构的影响. 物理学报, 2011, 60(12): 127303. doi: 10.7498/aps.60.127303
    [16] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [17] 胡海鑫, 张振华, 刘新海, 邱明, 丁开和. 石墨烯纳米带电子结构的紧束缚法研究. 物理学报, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
    [18] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [19] 刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星. 公度双壁碳纳米管层间耦合对其场发射特性影响的研究. 物理学报, 2006, 55(6): 2830-2837. doi: 10.7498/aps.55.2830
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  3610
  • PDF下载量:  1198
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-27
  • 修回日期:  2012-10-23
  • 刊出日期:  2013-03-05

石墨烯纳米带卷曲效应对其电子特性的影响

  • 1. 长沙理工大学物理与电子科学学院, 长沙 410114
    基金项目: 国家自然科学基金 (批准号: 61071015, 61101009, 61201080)、湖南省教育厅重点科研项目(批准号: 12A001)、湖南省重点学科建设项目和湖南省高校科技创新团队支持计划资助的课题.

摘要: 石墨烯纳米带 (GNRs) 是一种重要的纳米材料, 碳纳米管可看作是GNRs卷曲而成的无缝圆筒. 利用基于密度泛函理论的第一性原理方法, 系统研究了GNRs卷曲变形到不同几何构型时, 其电子特性, 包括能带结构 (特别是带隙) 、态密度、透射谱的变化规律. 结果表明: 无论是锯齿型GNRs (ZGNRs) 或扶手椅型GNRs (AGNRs), 在其卷曲成管之前, 其电子特性对卷曲形变均不敏感, 这意味着GNRs的电子结构及输运特性有较强地抵抗卷曲变形的能力. 当GNRs 卷曲成管后, ZGNRs和AGNRs表现出完全不同的性质, ZGNRs几乎保持金属性不变或变为准金属; 但AGNRs的电子特性有较大的变化, 出现不同带隙半导体、准金属之间的转变, 这也许密切关系到碳纳米管管口周长方向上的周期性边界条件及量子禁锢的改变. 这些研究对于了解GNRs电子特性的卷曲效应、以及GNRs与碳纳米管电子特性的关系 (结构与特性的关系) 有重要意义.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回