搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子与羟基碰撞的含时密度泛函理论研究

王志萍 朱云 吴亚敏 张秀梅

引用本文:
Citation:

质子与羟基碰撞的含时密度泛函理论研究

王志萍, 朱云, 吴亚敏, 张秀梅

Time-dependent density functional theory studies of dynamics of hydroxy by proton impact

Wang Zhi-Ping, Zhu Yun, Wu Ya-Min, Zhang Xiu-Mei
PDF
导出引用
  • 采用将含时密度泛函理论和分子动力学非绝热耦合的方法,研究了不同入射速度下质子与羟基碰撞的反应动力学. 计算了碰撞前后质子动能和羟基动能的变化及羟基电子和质子的运动. 计算结果表明,质子沿垂直羟基分子轴方向入射时,质子与羟基碰撞后,质子被反弹且动能损失并俘获了羟基中氧的一部分电子,而丢失部分电子的羟基则获得动能以伸缩振动的形式向计算边界平动. 随着入射质子的初动能增加,质子从羟基中俘获的电子增多,碰撞后羟基的键长变长,羟基振动变强而伸缩振动频率降低. 此外,还发现质子的入射方向对碰撞过程的激发动力学有很大的影响. 质子从不同的方向入射时,质子的入射初动能越大,其损失的动能越多且损失的动能与入射初动能呈线性关系,而入射方向对质子动能损失的影响很小. 在质子入射初动能较低(小于25 eV)的情况下,羟基获得的动能与质子入射初动能呈线性关系且与入射方向无关;在质子入射初动能较高(大于25 eV)时,当质子沿羟基分子轴方向入射时,羟基动能的增量远大于质子沿垂直于羟基分子轴方向入射时羟基动能的增量.
    Using the time-dependent density functional theory and non-adiabatic coupling in molecular dynamics, the reaction dynamics of collisions between energetic proton and hydroxy is studied. The variations in kinetic energy of proton and hydroxy and the motions of electron of hydroxyl and ion before and after collisions are investigated. It is found that when a proton is incident in the direction perpendicular to the molecular axis, it that has lose kinetic energy rebounds, and captures electrons from hydroxy, while the hydroxy that has lost part of electrons gains kinetic energy, and thus translates toward the calculating boundary in the manner of contracting vibration. The larger the kinetic energy of incident proton, the more the number of electrons captured from hydroxy is. Therefore the bond length of hydroxy lengthens, oscillation strengthens, and vibrational frequency decreases. In addition, it is found that the incident direction of proton has a great influence on the dynamic behavior of excitation in a collision process. Considering the case where the proton is incident from different directions, the results show that the larger the kinetic energy of incident proton, the more the lost energy is, and the lost energy is linearly related to the initial kinetic energy of incident proton. For hydroxy, when the incident kinetic energy of proton is less than 25 eV, the kinetic energy gained by the proton is linearly related to the initial kinetic energy, but unrelated to incident direction, while when the initial kinetic energy of incident proton is larger than 25 eV, the increment in kinetic energy of hydroxyl is much larger in the case where the proton is incident along the axis of hydroxyl molecule than in the case where the proton is incident in the direction perpendicular to the axis of the hydroxyl molecule.
    • 基金项目: 国家自然科学基金(批准号:61178032,11174114)、中央高等学校基本科研基金(批准号:JUSRP111A21)和江苏省高等教育学会“十一五”教育科学规划(批准号:JS053)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178032, 11174114), the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. JUSRP111A21), and the Education Science Program for the "11st Five-Year" Plan of Jiangsu Province Society of Higher Education, China (Grant No. JS053).
    [1]

    Zhu R B 1987 Radiation Biology (Beijing: Science Press) pp611–623 (in Chinese) [朱壬葆 1987 辐射生物学 (北京: 科学出版社) 第611–623页]

    [2]

    Mathur D 1993 Phys. Rep. 225 193

    [3]

    Luna H, Montenegro E C 2005 Phys. Rev. Lett. 94 043201

    [4]

    Michael B D, O’Neill P 2000 Science 287 1603

    [5]

    Cyriac J, Pradeep T, Kang H, Souda R, Cooks R G 2012 Chem. Rev. 112 5356

    [6]

    Shukla M K, Leszczynski J 2002 J. Phys. Chem. A 106 1011

    [7]

    von Sonntag C 1991 Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective (New York: Plenum Press) pp234–257

    [8]

    Murakami M, Kirchner T, Horbatsch M, Ldde H J 2012 Phys. Rev. A 85 052713

    [9]

    Hu Y H, Ye D D, Qi Y Y, Liu X J, Liu L 2012 Acta Phys. Sin. 61 243401 (in Chinese) [胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲 2012 物理学报 61 243401]

    [10]

    Errea L F, Illescas C, Méndez L, Rabadán I 2013 Phys. Rev. A 87 032709

    [11]

    Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2012 J. Chem. Phys. 136 054304

    [12]

    Stopera C, Maiti B, Morales J A 2012 Chem. Phys. Lett. 551 42

    [13]

    Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2011 J. Chem. Phys. 134 224308

    [14]

    Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493

    [15]

    Fennel T, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M, Suraud E 2003 Rev. Mod. Phys. 82 1793

    [16]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [17]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [18]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [19]

    Johnson R D 2013 NIST Computational Chemistry Comparison and Benchmark Database (Washington: National Institute of Standards and Technology)

    [20]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [21]

    Bilalbegovié G 2008 Eur. Phys. J. D 49 43

    [22]

    Burnus T, Marques M A L, Gross E K U 2005 Phys. Rev. A 71 010501(R)

  • [1]

    Zhu R B 1987 Radiation Biology (Beijing: Science Press) pp611–623 (in Chinese) [朱壬葆 1987 辐射生物学 (北京: 科学出版社) 第611–623页]

    [2]

    Mathur D 1993 Phys. Rep. 225 193

    [3]

    Luna H, Montenegro E C 2005 Phys. Rev. Lett. 94 043201

    [4]

    Michael B D, O’Neill P 2000 Science 287 1603

    [5]

    Cyriac J, Pradeep T, Kang H, Souda R, Cooks R G 2012 Chem. Rev. 112 5356

    [6]

    Shukla M K, Leszczynski J 2002 J. Phys. Chem. A 106 1011

    [7]

    von Sonntag C 1991 Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective (New York: Plenum Press) pp234–257

    [8]

    Murakami M, Kirchner T, Horbatsch M, Ldde H J 2012 Phys. Rev. A 85 052713

    [9]

    Hu Y H, Ye D D, Qi Y Y, Liu X J, Liu L 2012 Acta Phys. Sin. 61 243401 (in Chinese) [胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲 2012 物理学报 61 243401]

    [10]

    Errea L F, Illescas C, Méndez L, Rabadán I 2013 Phys. Rev. A 87 032709

    [11]

    Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2012 J. Chem. Phys. 136 054304

    [12]

    Stopera C, Maiti B, Morales J A 2012 Chem. Phys. Lett. 551 42

    [13]

    Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2011 J. Chem. Phys. 134 224308

    [14]

    Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493

    [15]

    Fennel T, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M, Suraud E 2003 Rev. Mod. Phys. 82 1793

    [16]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [17]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [18]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [19]

    Johnson R D 2013 NIST Computational Chemistry Comparison and Benchmark Database (Washington: National Institute of Standards and Technology)

    [20]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

    [21]

    Bilalbegovié G 2008 Eur. Phys. J. D 49 43

    [22]

    Burnus T, Marques M A L, Gross E K U 2005 Phys. Rev. A 71 010501(R)

  • [1] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [2] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [3] 郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-法在接触约束多体系统动力学中的应用. 物理学报, 2017, 66(16): 164501. doi: 10.7498/aps.66.164501
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [6] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [7] 张红, 尹海峰, 张开彪, 林家和. 基于含时密度泛函理论的表面等离激元研究进展. 物理学报, 2015, 64(7): 077303. doi: 10.7498/aps.64.077303
    [8] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [9] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [10] 令狐荣锋, 徐梅, 吕兵, 宋晓书, 杨向东. He原子与N2分子相互作用势的理论研究. 物理学报, 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [11] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究. 物理学报, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [12] 王志萍, 朱云, 吴鑫, 吴亚敏. CO分子在线性极化飞秒激光场中的TDDFT研究. 物理学报, 2013, 62(23): 233102. doi: 10.7498/aps.62.233102
    [13] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [14] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发. 物理学报, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [15] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究. 物理学报, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [16] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [17] 袁剑辉, 袁晓博. 单壁碳纳米管弹性性质的羟基接枝效应. 物理学报, 2008, 57(6): 3666-3673. doi: 10.7498/aps.57.3666
    [18] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [19] 王利光, 王 军. O5+离子与H原子碰撞时电子俘获概率的计算. 物理学报, 2003, 52(2): 312-315. doi: 10.7498/aps.52.312
    [20] 李延龄, 罗成林. Si60团簇的结构及其与Si(111)面间碰撞的分子动力学模拟. 物理学报, 2002, 51(11): 2589-2594. doi: 10.7498/aps.51.2589
计量
  • 文章访问数:  3319
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-16
  • 修回日期:  2013-10-17
  • 刊出日期:  2014-01-05

质子与羟基碰撞的含时密度泛函理论研究

  • 1. 江南大学理学院, 无锡 214122
    基金项目: 国家自然科学基金(批准号:61178032,11174114)、中央高等学校基本科研基金(批准号:JUSRP111A21)和江苏省高等教育学会“十一五”教育科学规划(批准号:JS053)资助的课题.

摘要: 采用将含时密度泛函理论和分子动力学非绝热耦合的方法,研究了不同入射速度下质子与羟基碰撞的反应动力学. 计算了碰撞前后质子动能和羟基动能的变化及羟基电子和质子的运动. 计算结果表明,质子沿垂直羟基分子轴方向入射时,质子与羟基碰撞后,质子被反弹且动能损失并俘获了羟基中氧的一部分电子,而丢失部分电子的羟基则获得动能以伸缩振动的形式向计算边界平动. 随着入射质子的初动能增加,质子从羟基中俘获的电子增多,碰撞后羟基的键长变长,羟基振动变强而伸缩振动频率降低. 此外,还发现质子的入射方向对碰撞过程的激发动力学有很大的影响. 质子从不同的方向入射时,质子的入射初动能越大,其损失的动能越多且损失的动能与入射初动能呈线性关系,而入射方向对质子动能损失的影响很小. 在质子入射初动能较低(小于25 eV)的情况下,羟基获得的动能与质子入射初动能呈线性关系且与入射方向无关;在质子入射初动能较高(大于25 eV)时,当质子沿羟基分子轴方向入射时,羟基动能的增量远大于质子沿垂直于羟基分子轴方向入射时羟基动能的增量.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回