搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横截面积参数对钛氧化物忆阻器导电特性的影响

田晓波 徐晖 李清江

引用本文:
Citation:

横截面积参数对钛氧化物忆阻器导电特性的影响

田晓波, 徐晖, 李清江

Influence of the cross section area on the conductive characteristics of titanium oxide memristor

Tian Xiao-Bo, Xu Hui, Li Qing-Jiang
PDF
导出引用
  • 纳米钛氧化物忆阻器的导电过程因自身参数的改变及不同机理的共存而呈现复杂特性,但现有研究缺乏针对横截面积参数的改变对忆阻器导电特性影响的讨论. 基于杂质漂移及隧道势垒机理,本文分析了忆阻器导电过程,研究了横截面积参数与导电过程中各关键物理要素间的关联,并基于此,分别研究了钛氧化物横截面积及隧道势垒横截面积的改变对忆阻器导电特性的影响,分析了两者的区别与联系. 验证了两种机理共存情况下,相对于钛氧化物横截面积的改变,隧道势垒横截面积的改变是引发忆阻器导电特性变化的主要因素,且是导致忆阻器非理想导电特性的可能因素. 研究成果有助于进一步解释忆阻器导电过程的复杂性,并为优化忆阻器模型的构建提供依据.
    The conduction of nano-scale titanium oxide memristor exhibits complex characteristics, owing to the change of self-parameters and the coexistence of different conductive mechanisms. However, there has been no detailed discussion about the influence of the cross section area change on the conductive characteristics of memristor. Based on dopant drift and tunnel barrier mechanisms, the conductive process of memristor is analysed, and the relevance between cross section area and key physical factors of the conductive process is studied, then the influences of the changes of titanium oxide and tunnel barrier cross section area on conductive characteristics of memristors are studied, respectively. The differences and connections between the two cases are analysed. In the case of the coexistence of those two mechanisms, compared with the change of titanium oxide cross section area, the change of tunnel barrier cross section area is proved to be the chief factor which causes changes of memristor conductive characteristics, it is also a possible factor causing the change of non-ideal conductive characteristics of memristor. The research results contribute to further explaining the complexity of memristor conductions and providing basis for optimizing memristor modeling.
    • 基金项目: 国家自然科学基金(批准号:61171017, F010505)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171017, F010505).
    [1]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [4]

    Fang X D, Tang Y H, Wu J J 2012 Chin. Phys. B 21 098901

    [5]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I Reg. Papers 59 148

    [6]

    Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California, July 23-25, 2009, p939

    [7]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 许建平 2010 物理学报 59 3785]

    [9]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [10]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 物理学报 62 096401]

    [11]

    Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 物理学报 61 118101]

    [12]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306]

    [13]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [14]

    Stewart D R, Ohlberg D A A, Beck P A, Chen Y, Williams R S 2004 Nano Lett. 4 133

    [15]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [16]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [17]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [18]

    Prodromakis T, Michelakis K, Toumazou C 2010 Electron. Lett. 46 63

    [19]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [20]

    Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems Brazil, May 15-18, 2011 p1832

  • [1]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Chua L O, Kang S M 1976 Proc. IEEE 64 209

    [4]

    Fang X D, Tang Y H, Wu J J 2012 Chin. Phys. B 21 098901

    [5]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I Reg. Papers 59 148

    [6]

    Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California, July 23-25, 2009, p939

    [7]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese) [包伯成, 刘中, 许建平 2010 物理学报 59 3785]

    [9]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [10]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese) [李智炜, 刘海军, 徐欣 2013 物理学报 62 096401]

    [11]

    Song D H, L M F, Ren X, Li M M, Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese) [宋德华, 吕梦菲, 任翔, 李萌萌, 俎云霄 2012 物理学报 61 118101]

    [12]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306]

    [13]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [14]

    Stewart D R, Ohlberg D A A, Beck P A, Chen Y, Williams R S 2004 Nano Lett. 4 133

    [15]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [16]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [17]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [18]

    Prodromakis T, Michelakis K, Toumazou C 2010 Electron. Lett. 46 63

    [19]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [20]

    Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems Brazil, May 15-18, 2011 p1832

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [4] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [5] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [6] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [8] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [9] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [10] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [11] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [12] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [13] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [14] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [15] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [19] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  5273
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-11
  • 修回日期:  2013-10-23
  • 刊出日期:  2014-02-05

/

返回文章
返回