搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

八重准周期排列的短沟槽结构减阻机理分析

郎莎莎 耿兴国 臧渡洋

引用本文:
Citation:

八重准周期排列的短沟槽结构减阻机理分析

郎莎莎, 耿兴国, 臧渡洋

Drag reduction mechanisms of 8-fold quasi-periodic short groove structures

Lang Sha-Sha, Geng Xing-Guo, Zang Du-Yang
PDF
导出引用
  • 设计构建了一排和三排阵列的八重准周期短条纹沟槽减阻结构,以及作为对比研究的无序和周期结构,并采用雷诺Navier-Stokes方程和RANG k-ε湍流模型,系统计算了这些结构表面的湍流边界层状态和总应力. 模拟结果显示:八重准周期沟槽结构相对于周期和无序结构具有更优的减阻效应,且为三排阵列时的减阻效果明显优于单排阵列. 这一结果得到了减阻实验的验证. 通过分析比较不同结构的流体边界层特性发现,八重准周期结构可有效抑制附面层的涡强度,减小湍流耗散速率,保持流体条纹相的稳定性. 结合二维光栅的夫琅禾费衍射波模型分析表明,八重准周期结构可减弱衍射谱在大角度方向上的谱强度,揭示出该结构抑制流体相干扰动波扩展的物理机制,并与流场分析结果相符合.
    We design two types of 8-fold quasi-period short groove structures which are arranged in single row and three rows respectively The flow field in the turbulent boundary layer and the total stress over these groove surfaces are numerically simulated by using Reynolds average Navier-Stokes equation and turbulence model. It is shown that the 8-fold quasi-periodic structure has good drag reduction effect compared with the periodic and disorder structures, especially for structure arranged in three rows. The results are also confirmed by the sheer stress measurements which are performed on substrates with the designed structures. By analyzing the distribution of flow field, we find that the quasi-periodic structure effectively inhibits the intensity of vortex, reduces the turbulent dissipation rate, and keeps the stripe phase stable. Furthermore, by using the two-dimensional grating model, it is found that the 8-fold quasi-periodic structure can reduce spectrum intensity in the large angle direction, revealing that the inhibition of the extension of coherence disturbance waves is responsible for the drag reduction effect, which is also confirmed by the flow field analysis.
    • 基金项目: 国家自然科学基金(批准号:51301139,10872172)、高等学校博士学科点专项科研基金(批准号:20126102120058)和西北工业大学基础研究基金(批准号:JCY20130147)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301139, 10872172), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20126102120058), and Fundamental Research Foundation of Northwestern Polytechnical University, China (Grant No. JCY20130147).
    [1]

    Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486

    [2]

    Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 物理学报 55 6470]

    [3]

    Park J Y, Ogletree D F, Salmeron M, Ribeiro R A 2006 Phys. Rev. B: Condens. Matter Mater. Phys. 74 24203

    [4]

    Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 物理学报 57 3260]

    [5]

    Yuan Y H, Yang J H 2005 Chin. Phys. 14 1683

    [6]

    Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941

    [7]

    Dong J W, Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1936

    [8]

    Dean B, Bhushan B 2012 Adv. Mech. 42 6

    [9]

    Zhang D Y, Luo Y H, Li X, Chen H W 2011 J. Hydrodyn. B 23 204

    [10]

    Hefner J N, Bushnel D M, Walsh M J 1983 Date Exchange Meeting on Viscous and Interacting Flow Field Effects Gottingen, West Germany, May 25-26, 1983 p11

    [11]

    Wang J J, Fu S, Meng G Q 2001 The Latest Progress of Turbulence Research (Beijing: Science Press) pp230-233 (in Chinese) [王晋军, 符松, 梦庆国 2001 湍流研究最新进展 (北京: 科学出版社) 第230–233页]

    [12]

    Liu Z Y, Hu H B, Song B W, Huang Q G 2009 J. Syst. Simlat. 21 6025 (in Chinese) [刘占一, 胡海豹, 宋宝维, 黄桥高 2009 系统仿真学报 21 6025]

    [13]

    Garcia-Mayoral R, Jimenez J 2011 Phil. Trans. Roy. Soc. A 369 1412

    [14]

    Choi K S 2000 Fluid Dyn. Res. 26 325

    [15]

    Nugroho B, Hutchins N, Monty J P 2013 Int. J. Heat Fluid Flow 41 90

    [16]

    EI-Samni O A, Chun H H, Yoon H S 2007 Int. J. Engineer. Sci. 45 436

    [17]

    Strand J S, Goldstein D B 2011 J. Fluid Mech. 668 267

    [18]

    Zhang Y H, Cheng Y S 1995 Acta Phys. Sin. 44 204 (in Chinese) [张玉河, 陈岩松 1995 物理学报 44 204]

    [19]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [20]

    Daniello R J, Waterhouse N E, Rothstein J P 2009 Phys. Fluids 21 085103

    [21]

    Han Z W, Zhang J Q, Chao G, Li W, Ren L Q 2011 Langmuir 28 2914

    [22]

    Moradi H V, Floryan J M 2013 J. Fluid Mech. 716 280

    [23]

    Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 物理学报 62 054701]

    [24]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [25]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 物理学报 61 194702]

    [26]

    Garc\’ia-Mayoral R, Jiménez J 2011 Phil. Trans. Soc. A 369 1414

    [27]

    Jung C Y, Bhushan B 2010 J. Phys. 22 035104

    [28]

    Xue W H, Geng X G, Li J, Li F, Wu J 2010 Chin. Phys. Lett. 27 104703

  • [1]

    Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486

    [2]

    Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 物理学报 55 6470]

    [3]

    Park J Y, Ogletree D F, Salmeron M, Ribeiro R A 2006 Phys. Rev. B: Condens. Matter Mater. Phys. 74 24203

    [4]

    Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 物理学报 57 3260]

    [5]

    Yuan Y H, Yang J H 2005 Chin. Phys. 14 1683

    [6]

    Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941

    [7]

    Dong J W, Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1936

    [8]

    Dean B, Bhushan B 2012 Adv. Mech. 42 6

    [9]

    Zhang D Y, Luo Y H, Li X, Chen H W 2011 J. Hydrodyn. B 23 204

    [10]

    Hefner J N, Bushnel D M, Walsh M J 1983 Date Exchange Meeting on Viscous and Interacting Flow Field Effects Gottingen, West Germany, May 25-26, 1983 p11

    [11]

    Wang J J, Fu S, Meng G Q 2001 The Latest Progress of Turbulence Research (Beijing: Science Press) pp230-233 (in Chinese) [王晋军, 符松, 梦庆国 2001 湍流研究最新进展 (北京: 科学出版社) 第230–233页]

    [12]

    Liu Z Y, Hu H B, Song B W, Huang Q G 2009 J. Syst. Simlat. 21 6025 (in Chinese) [刘占一, 胡海豹, 宋宝维, 黄桥高 2009 系统仿真学报 21 6025]

    [13]

    Garcia-Mayoral R, Jimenez J 2011 Phil. Trans. Roy. Soc. A 369 1412

    [14]

    Choi K S 2000 Fluid Dyn. Res. 26 325

    [15]

    Nugroho B, Hutchins N, Monty J P 2013 Int. J. Heat Fluid Flow 41 90

    [16]

    EI-Samni O A, Chun H H, Yoon H S 2007 Int. J. Engineer. Sci. 45 436

    [17]

    Strand J S, Goldstein D B 2011 J. Fluid Mech. 668 267

    [18]

    Zhang Y H, Cheng Y S 1995 Acta Phys. Sin. 44 204 (in Chinese) [张玉河, 陈岩松 1995 物理学报 44 204]

    [19]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [20]

    Daniello R J, Waterhouse N E, Rothstein J P 2009 Phys. Fluids 21 085103

    [21]

    Han Z W, Zhang J Q, Chao G, Li W, Ren L Q 2011 Langmuir 28 2914

    [22]

    Moradi H V, Floryan J M 2013 J. Fluid Mech. 716 280

    [23]

    Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 物理学报 62 054701]

    [24]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [25]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 物理学报 61 194702]

    [26]

    Garc\’ia-Mayoral R, Jiménez J 2011 Phil. Trans. Soc. A 369 1414

    [27]

    Jung C Y, Bhushan B 2010 J. Phys. 22 035104

    [28]

    Xue W H, Geng X G, Li J, Li F, Wu J 2010 Chin. Phys. Lett. 27 104703

  • [1] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [2] 王伟, 出口祥啓, 何永森, 张家忠. 涡脱落热声振荡中相似性及涡声锁频行为. 物理学报, 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [3] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题. 物理学报, 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [4] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [5] 王光学, 王圣业, 葛明明, 邓小刚. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [6] 郭广明, 刘洪, 张斌, 张庆兵. 脉冲激励下超音速混合层涡结构的演化机理. 物理学报, 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [7] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽. 物理学报, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [8] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性. 物理学报, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [9] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [10] 刘静, 武瑜, 高勇. 沟槽型发射极SiGe异质结双极化晶体管新结构研究. 物理学报, 2014, 63(14): 148503. doi: 10.7498/aps.63.148503
    [11] 吴文堂, 洪延姬, 范宝春. 确定分布的展向Lorentz力调制下的槽道湍流涡结构. 物理学报, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [12] 陈云祥, 陈科, 尤云祥, 胡天群. 层流圆管潜射流生成蘑菇形涡结构特性数值研究. 物理学报, 2013, 62(11): 114701. doi: 10.7498/aps.62.114701
    [13] 王晓娜, 耿兴国, 臧渡洋. 一维周期与准周期排列沟槽结构的流体减阻特性研究. 物理学报, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [14] 张盟, 耿兴国, 张瑶, 王晓娜. 一维短沟槽复合准晶结构减阻效应及模拟分析. 物理学报, 2012, 61(19): 194702. doi: 10.7498/aps.61.194702
    [15] 陈科, 尤云祥, 胡天群, 朱敏慧, 王小青. 分层流体中移动动量源生成准二维偶极子涡街特性实验. 物理学报, 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [16] 孙明昭, 张淳民, 宋晓平. 新型八边形谐振环金属线复合周期结构左手材料奇异性质研究. 物理学报, 2010, 59(8): 5444-5449. doi: 10.7498/aps.59.5444
    [17] 廖龙光, 付虹, 傅秀军. 十二次对称准周期结构的自相似变换及准晶胞构造. 物理学报, 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [18] 蔡其发, 黄思训, 高守亭, 钟 科, 李自强. 计算涡度的新方法. 物理学报, 2008, 57(6): 3912-3919. doi: 10.7498/aps.57.3912
    [19] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究. 物理学报, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [20] 刘明华, 禹思敏. 多涡卷高阶广义Jerk电路. 物理学报, 2006, 55(11): 5707-5713. doi: 10.7498/aps.55.5707
计量
  • 文章访问数:  2775
  • PDF下载量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-14
  • 修回日期:  2014-01-14
  • 刊出日期:  2014-04-05

八重准周期排列的短沟槽结构减阻机理分析

  • 1. 西北工业大学理学院, 教育部空间应用物理与化学重点实验室, 西安 710129
    基金项目: 国家自然科学基金(批准号:51301139,10872172)、高等学校博士学科点专项科研基金(批准号:20126102120058)和西北工业大学基础研究基金(批准号:JCY20130147)资助的课题.

摘要: 设计构建了一排和三排阵列的八重准周期短条纹沟槽减阻结构,以及作为对比研究的无序和周期结构,并采用雷诺Navier-Stokes方程和RANG k-ε湍流模型,系统计算了这些结构表面的湍流边界层状态和总应力. 模拟结果显示:八重准周期沟槽结构相对于周期和无序结构具有更优的减阻效应,且为三排阵列时的减阻效果明显优于单排阵列. 这一结果得到了减阻实验的验证. 通过分析比较不同结构的流体边界层特性发现,八重准周期结构可有效抑制附面层的涡强度,减小湍流耗散速率,保持流体条纹相的稳定性. 结合二维光栅的夫琅禾费衍射波模型分析表明,八重准周期结构可减弱衍射谱在大角度方向上的谱强度,揭示出该结构抑制流体相干扰动波扩展的物理机制,并与流场分析结果相符合.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回