搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟

张金平 张洋洋 李慧 高景霞 程新路

引用本文:
Citation:

纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟

张金平, 张洋洋, 李慧, 高景霞, 程新路

Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system

Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu
PDF
导出引用
  • 利用分子动力学模拟方法和反应力场势函数研究了Al/SiO2层状纳米体系的铝热反应,模拟了在不同初始温度下(600,700,800,900,1000和1100 K)绝热反应的结构变化和能量性质. 发现Al/SiO2体系的铝热反应是自加热的氧化还原反应. 当初始温度为900和1000 K时,Al经历了熔化前的一个临界状态,与SiO2的铝热反应比较活跃,系统温度随着反应时间的增加不断升高. 当初始温度为600,700,800和1100 K时,初始温度越高,在Al和SiO2界面形成的Al-O层越薄,系统发生铝热反应达到的最终绝热温度越高,所用的时间(有效反应时间)越短,即界面扩散阻挡层的厚度对铝热反应的自加热速率产生了影响. 初始温度为600,700,800,1100 K时的自加热速率分别为3.4,3.5,4.7 和5.4 K/ps. Al/SiO2体系的铝热反应析出了Si单质,与实验结果相符合.
    In this study we have investigated the thermite reaction of Al/SiO2 layered structure by classical molecular dynamics simulation in combination with the reactive force field function. Under the adiabatic conditions, we simulate the structural changes and energetic properties of the system at six different initial temperatures (600, 700, 800, 900, 1000 and 1100 K). These results show that the thermite reaction of Al/SiO2 is the self-heating reduction-oxidation (redox) reaction. When the initial temperatures are 900 and 1000 K, the Al layers change into liquid-like structure under melting points. The thermite reaction happens with a much faster rate. At other initial temperatures such as 600, 700, 800 and 1100 K, the thin Al-O layer at the interface is quite weak for the higher initial temperature. The adiabatic reaction temperature increases and the effective reaction time decreases with the increasing of the initial temperature. the reaction self-heating rates are 3.4, 3.5, 4.7 and 5.4 K/ps for the initial temperatures of 600, 700, 800 and 1100 K, respectively. The results reveal that the thermite reaction self-heating rates depend on the thickness of interfacial diffusion barrier in the nanoparticle. In addition, the thermite reaction of the Al/SiO2 system leaves the Si, which accord well with the experimental result.
    • 基金项目: 国家自然科学基金(批准号:11176020)、河南省教育厅科学技术重点项目(批准号:13B140986,13B430985)和郑州市科技局(批准号:121PPTGG359-3,121PYFZX178)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11176020), the Key Program of Science and Technology of the Henan Educational Committee, China (Grant Nos. 13B140986, 13B430985), and the Program of Zhengzhou Science and Technology Bureau, China (Grant Nos. 121PPTGG359-3, 121PYFZX178).
    [1]

    Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]

    [2]
    [3]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [4]

    Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202

    [5]
    [6]
    [7]

    Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296

    [8]

    Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122

    [9]
    [10]
    [11]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [12]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [13]
    [14]

    Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181

    [15]
    [16]
    [17]

    Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52

    [18]
    [19]

    Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184

    [20]
    [21]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [22]
    [23]

    Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103

    [24]
    [25]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [26]
    [27]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [28]
    [29]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [30]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [31]
    [32]
    [33]

    Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]

    [34]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [35]
    [36]
    [37]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [38]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [39]
    [40]

    Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002

    [41]
    [42]
    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [44]
    [45]

    Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 物理学报 60 066801]

    [46]

    Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707

    [47]
  • [1]

    Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]

    [2]
    [3]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [4]

    Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202

    [5]
    [6]
    [7]

    Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296

    [8]

    Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122

    [9]
    [10]
    [11]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [12]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [13]
    [14]

    Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181

    [15]
    [16]
    [17]

    Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52

    [18]
    [19]

    Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184

    [20]
    [21]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [22]
    [23]

    Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103

    [24]
    [25]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [26]
    [27]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [28]
    [29]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [30]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [31]
    [32]
    [33]

    Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]

    [34]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [35]
    [36]
    [37]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [38]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [39]
    [40]

    Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002

    [41]
    [42]
    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [44]
    [45]

    Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 物理学报 60 066801]

    [46]

    Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707

    [47]
  • [1] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [2] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理. 物理学报, 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [3] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [4] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [9] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [10] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [11] 周耐根, 胡秋发, 许文祥, 李克, 周浪. 硅熔化特性的分子动力学模拟–-不同势函数的对比研究 . 物理学报, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [12] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟. 物理学报, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [13] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响. 物理学报, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [14] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [15] 范永胜, 陈旭, 周维, 史顺平, 李勇. 分子动力学模拟压水反应堆中联氨对水的影响. 物理学报, 2011, 60(3): 032802. doi: 10.7498/aps.60.032802
    [16] 马颖, 孙玲玲, 周益春. BaTiO3铁电体中辐射位移效应的分子动力学模拟. 物理学报, 2011, 60(4): 046105. doi: 10.7498/aps.60.046105
    [17] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟. 物理学报, 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [20] 韩甫田, 郭立平, 刘平安, 唐振方, 施其宏. 半结晶聚酯(PET)的二相共存结构的表征. 物理学报, 2001, 50(6): 1132-1138. doi: 10.7498/aps.50.1132
计量
  • 文章访问数:  4216
  • PDF下载量:  1102
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-10
  • 修回日期:  2014-01-08
  • 刊出日期:  2014-04-05

纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟

  • 1. 黄河科技学院信息工程学院, 郑州 450006;
  • 2. 四川大学原子与分子物理研究所, 成都 610065
    基金项目: 国家自然科学基金(批准号:11176020)、河南省教育厅科学技术重点项目(批准号:13B140986,13B430985)和郑州市科技局(批准号:121PPTGG359-3,121PYFZX178)资助的课题.

摘要: 利用分子动力学模拟方法和反应力场势函数研究了Al/SiO2层状纳米体系的铝热反应,模拟了在不同初始温度下(600,700,800,900,1000和1100 K)绝热反应的结构变化和能量性质. 发现Al/SiO2体系的铝热反应是自加热的氧化还原反应. 当初始温度为900和1000 K时,Al经历了熔化前的一个临界状态,与SiO2的铝热反应比较活跃,系统温度随着反应时间的增加不断升高. 当初始温度为600,700,800和1100 K时,初始温度越高,在Al和SiO2界面形成的Al-O层越薄,系统发生铝热反应达到的最终绝热温度越高,所用的时间(有效反应时间)越短,即界面扩散阻挡层的厚度对铝热反应的自加热速率产生了影响. 初始温度为600,700,800,1100 K时的自加热速率分别为3.4,3.5,4.7 和5.4 K/ps. Al/SiO2体系的铝热反应析出了Si单质,与实验结果相符合.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回