搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质结电荷转移的密度矩阵理论近似研究

王鹿霞 常凯楠

引用本文:
Citation:

异质结电荷转移的密度矩阵理论近似研究

王鹿霞, 常凯楠

Study on electron transfer in a heterogeneous system using a density matrix theory approach

Wang Lu-Xia, Chang Kai-Nan
PDF
导出引用
  • 分子半导体组成的异质结构是染料敏化太阳能电池的主要部分,电荷转移效率的提高是太阳能转换效率的关键. 在金属纳米粒子与染料分子和半导体TiO2 组成的系统中,考虑半导体的晶格结构、电子波函数在晶格边界的反射及金属纳米粒子中的等离激元效应,应用密度矩阵理论研究在光激发分子作用下电荷从分子转移到半导体晶格的动力学过程,采用密度矩阵和波函数相结合的处理方案研究了分子半导体电荷转移过程中的等离激元效应. 研究发现金属钠米粒子激发所产生的等离激元可以使电荷从分子到半导体的转移效率提高3个数量级,是提高电荷转移效率的有效手段,且密度矩阵理论与波函数相结合的方法使得计算分子与15 nm尺度的半导体纳米晶体间的电荷转移成为可能,理论分析了表面等离激元的增益作用对电荷转移的影响.
    Heterogeneous structure of a molecule semiconductor is the essential part of dye-sensitized solar cell, and the charge injection in it is the key factor of efficiency of solar energy conversion. A heterogeneous system is investigated where a metal nano-particle is used to decorate the structure of dye molecules and TiO2 semiconductor. Photoinduced charge injection dynamics from the molecule dye to TiO2 lattice is studied using density matrix theory. Simulations can account for the semiconductor lattice structure, the reflection of electron wave function in the lattice boundary, as well as the plasmon effect of the metal nano-particles. The compound treatment of density matrix theory and wave function approach is verified to be an efficient way for calculating the plasmon effect in the heterogeneous system. It is found that the plasmon enhancement due to the photoexcitation of metal nano-particles can reach as high as 3 orders of magnitude, which is shown to be an efficient way of improvement of charge conversion. The approach of density matrix theory and wave function treatment makes it possible to simulate the charge transfer in large-scale bulk semiconductor, the result of which is helpful for the theoretical analysis of plasmon enhancement in charge transfer dynamics.
    • 基金项目: 国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174029) and the Fundamental Research Fund for Central University of China.
    [1]

    Yu X H, Sun Z Z, Lian J, Li Y T, Chen Y X, Gao S, Wang X, Wang Y S, Zhao M L 2013 Chin. Phys. Lett. 30 118801

    [2]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)[徐双英, 胡林华, 李文欣, 戴松元 2011 物理学报 60 116802]

    [3]

    Yella A, Lee H-W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [4]

    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M 2009 J. Am. Chem. Soc. 131 5930

    [5]

    Grätzel Gratzel M 2001 Nature 414 338

    [6]

    Pastore M, Fantacci S, Angelis F De 2013 J. Phys. Chem. C 117 3685

    [7]

    Hartland G V 2012 J. Phys. Chem. Lett. 3 1421

    [8]

    Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song C F, Xu Yun 2014 Chin. Phys. B 23 038803

    [9]

    Yoon W J, Jung K Y, Liu J, Duraisamy T, Revur R, Teixeira F L, Sengupta S, Berger P R 2010 Sol. Energ. Mat. Sol. C 94 128

    [10]

    Liu D D, Zang H 2011 Chin. Phys. B 20 097105

    [11]

    Hagglund C, Zach M, Kasemo B 2008 Appl. Phys. Lett. 92 013113

    [12]

    Ishikawa K, Wen C, Yamada K, Okubo T 2004 J. Chem. Eng. Jpn. 37 645

    [13]

    Rand B, Peumans P, Forrest S 2004 J. Appl. Phys. 96 7519

    [14]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501

    [15]

    Prezhdo O V, Duncan W R, Prezhdo V V 2009 Prog. Surf. Sci. 84 30

    [16]

    Martsinovich N, Troisi A 2011 J. Phys. Chem. C 115 11781

    [17]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin 61 097805 (in Chinese)[邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [18]

    Negre C F A, Fuertes V C, Oviedo M B, Oliva F Y, Sanchez C G 2012 J. Phys. Chem. C 116 14748

    [19]

    Oviedo M B, Zarate X, Negre C F A, Schott E, Arratia–Perez R, Sanchez C G 2012 J. Phys. Chem. Lett. 3 2548

    [20]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 物理学报 62 237303]

    [21]

    Zhao H M, Wang L X 2009 Acta Phys. Sin. 58 1332 (in Chinese)[赵红敏, 王鹿霞 2009 物理学报 58 1332]

    [22]

    Wang L, Ernstorfer R, Willig F, May V 2005 J. Phys Chem B 109 9589

    [23]

    Zelinskyy Y, Zhang Y, May V 2012 J. Phys. Chem. A 116 11330

    [24]

    Tsivlin D V, Willig F, May V 2008 Phys. Rev. B 77 035319

    [25]

    Schelling P K, Yu N, Halley J W 1998 Phys. Rev. B 58 1279

    [26]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [27]

    Sun X F, Wang L X 2014 Acta Phys. Sin 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]

  • [1]

    Yu X H, Sun Z Z, Lian J, Li Y T, Chen Y X, Gao S, Wang X, Wang Y S, Zhao M L 2013 Chin. Phys. Lett. 30 118801

    [2]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese)[徐双英, 胡林华, 李文欣, 戴松元 2011 物理学报 60 116802]

    [3]

    Yella A, Lee H-W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [4]

    Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M 2009 J. Am. Chem. Soc. 131 5930

    [5]

    Grätzel Gratzel M 2001 Nature 414 338

    [6]

    Pastore M, Fantacci S, Angelis F De 2013 J. Phys. Chem. C 117 3685

    [7]

    Hartland G V 2012 J. Phys. Chem. Lett. 3 1421

    [8]

    Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song C F, Xu Yun 2014 Chin. Phys. B 23 038803

    [9]

    Yoon W J, Jung K Y, Liu J, Duraisamy T, Revur R, Teixeira F L, Sengupta S, Berger P R 2010 Sol. Energ. Mat. Sol. C 94 128

    [10]

    Liu D D, Zang H 2011 Chin. Phys. B 20 097105

    [11]

    Hagglund C, Zach M, Kasemo B 2008 Appl. Phys. Lett. 92 013113

    [12]

    Ishikawa K, Wen C, Yamada K, Okubo T 2004 J. Chem. Eng. Jpn. 37 645

    [13]

    Rand B, Peumans P, Forrest S 2004 J. Appl. Phys. 96 7519

    [14]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501

    [15]

    Prezhdo O V, Duncan W R, Prezhdo V V 2009 Prog. Surf. Sci. 84 30

    [16]

    Martsinovich N, Troisi A 2011 J. Phys. Chem. C 115 11781

    [17]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin 61 097805 (in Chinese)[邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [18]

    Negre C F A, Fuertes V C, Oviedo M B, Oliva F Y, Sanchez C G 2012 J. Phys. Chem. C 116 14748

    [19]

    Oviedo M B, Zarate X, Negre C F A, Schott E, Arratia–Perez R, Sanchez C G 2012 J. Phys. Chem. Lett. 3 2548

    [20]

    Tan Z, Wang L X 2013 Acta Phys. Sin. 62 237303 (in Chinese)[谭姿, 王鹿霞 2013 物理学报 62 237303]

    [21]

    Zhao H M, Wang L X 2009 Acta Phys. Sin. 58 1332 (in Chinese)[赵红敏, 王鹿霞 2009 物理学报 58 1332]

    [22]

    Wang L, Ernstorfer R, Willig F, May V 2005 J. Phys Chem B 109 9589

    [23]

    Zelinskyy Y, Zhang Y, May V 2012 J. Phys. Chem. A 116 11330

    [24]

    Tsivlin D V, Willig F, May V 2008 Phys. Rev. B 77 035319

    [25]

    Schelling P K, Yu N, Halley J W 1998 Phys. Rev. B 58 1279

    [26]

    Kyas G, May V 2011 J. Chem. Phys. 134 034701

    [27]

    Sun X F, Wang L X 2014 Acta Phys. Sin 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]

计量
  • 文章访问数:  1969
  • PDF下载量:  379
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-03
  • 修回日期:  2014-03-21
  • 刊出日期:  2014-07-05

异质结电荷转移的密度矩阵理论近似研究

  • 1. 北京科技大学数理学院物理系, 北京 100083
    基金项目: 

    国家自然科学基金(批准号:11174029)和中央高校基本科研业务费资助的课题.

摘要: 分子半导体组成的异质结构是染料敏化太阳能电池的主要部分,电荷转移效率的提高是太阳能转换效率的关键. 在金属纳米粒子与染料分子和半导体TiO2 组成的系统中,考虑半导体的晶格结构、电子波函数在晶格边界的反射及金属纳米粒子中的等离激元效应,应用密度矩阵理论研究在光激发分子作用下电荷从分子转移到半导体晶格的动力学过程,采用密度矩阵和波函数相结合的处理方案研究了分子半导体电荷转移过程中的等离激元效应. 研究发现金属钠米粒子激发所产生的等离激元可以使电荷从分子到半导体的转移效率提高3个数量级,是提高电荷转移效率的有效手段,且密度矩阵理论与波函数相结合的方法使得计算分子与15 nm尺度的半导体纳米晶体间的电荷转移成为可能,理论分析了表面等离激元的增益作用对电荷转移的影响.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回