搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(n, n)-(2n, 0)碳纳米管异质结的扭转力学特性

韩典荣 王璐 罗成林 朱兴凤 戴亚飞

引用本文:
Citation:

(n, n)-(2n, 0)碳纳米管异质结的扭转力学特性

韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞

Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction

Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei
PDF
导出引用
  • 相近直径的锯齿型和扶手椅型碳纳米管可以共轴组合形成5-7碳环交替出现的柱形对称异质结. 本文利用分子动力学方法研究了直径相近且等长锯齿型和扶手椅型碳纳米管形成的(n, n)-(2n, 0)结在扭转过程中的扭矩和轴向应力随扭转角度的变化规律以及应力传递过程. 研究发现, (n, n)-(2n, 0)结扭转应变在达弹性限度内不会产生轴向应力, 该效应对基于碳纳米管扭转特性的纳米振荡器件的设计具有重要意义.
    A coaxial cylindrical heterojunction of carbon tubes, which consists of alternant bands of 5- and 7-membered rings, can be formed by one armchair (n, n) carbon nanotube and one zigzag (2n, 0) carbon nanotube. The torsional mechanical properties of this kind of (n, n)-(2n, 0) heterojunction constructed by the same length of armchair and zigzag nanotubes are studied by using molecular dynamics method. In order to make a comparison, the relations of the torque and axial stress to torsional angle of (n, n) and (2n, 0) carbon tubes are also systemically calculated. Moreover, the transfer process of torsional stress in the (n, n)-(2n, 0) heterojunction is analyzed. Some important conclusions are obtained. Firstly, the torsional angle corresponding to the buckling point of carbon nanotubes is closely related to their torsional stiffness. The buckling angle decreases monotonically with torsional stiffness. Secondly, as the torsion develops, the torsional stress appears from the joint position due to the fact that the junction part in the (n, n)-(2n, 0) heterojunction has the smallest torsional stiffness and then transfers from the joint position to both ends. The propagation velocity of the torsional stress in (n, n) nanotube which has smaller stiffness is faster than that in (2n, 0) nanotube with bigger stiffness. Finally, for the process of torsion within the elastic limit, no axial stress is produced in (n, n)-(2n, 0) heterojunction during the torsion. This effect is of great significance for designing the carbon nanotube-based nano-oscillator devices.
    • 基金项目: 国家自然科学基金青年基金(批准号: 21203097)、江苏省高校自然科学研究项目(批准号: 14KJB140006)和江苏高校优势学科建设工程项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203097), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 14KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Golberg D, Costa P M F J, Mitome M, Bando Y 2009 J Mater. Chem. 19 909

    [3]

    Wang J N, Luo X G, Wu T, Chen Y 2014 Nature Commun. 5 3848

    [4]

    Schneider B H, Etaki S, van der Zant H S, Steele G A 2012 Sci. Rep. 2 599

    [5]

    Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281

    [6]

    Ouyang Y, Peng J C, Wang H, Yi S P 2008 Acta Phys. Sin. 57 0615

    [7]

    Zhang Y, Cao J X, Yang W 2008 Chin. Phys. B 17 1881

    [8]

    Karimov Kh S, Tariq Saeed Chani M, Ahmad Khalid F, Khan A, Khan R 2012 Chin. Phys. B 21 016102

    [9]

    Evoy S, Carr D W, Sekaric A, Parpia J M, Craighead H G 1999 J. Appl. Phys. 86 6072

    [10]

    Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S, Cumings J, Zettl A 2003 Nature 424 408

    [11]

    Tombler T W, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi C S, Tang M, Wu S Y 2000 Nature 405 769

    [12]

    Gartstein Y N, Zakhidov A A, Baughman R H 2003 Phys. Rev. B 68 115415

    [13]

    Ni X G, Wang Y, Zhang Z, Wang X X 2006 Chin. J. Chem. Phys 19 194

    [14]

    Lu J P 1997 Phys. Rev. Lett. 79 1297

    [15]

    Gupta S, Dharamvir K, Jindal V K 2005 Phys. Rev. B 72 165428

    [16]

    Williams P A, Papadakis S J, Patel A M, Falvo M R, Washburn S, Superfine R 2002 Phys. Rev. Lett. 89 255502-1

    [17]

    Cohen-Karni T, Segev L, Srur-Lavi O, Cohen S R, Joselevich E 2006 Nature Nanotech. 1 36

    [18]

    Rochefort A, Avouris P, Lesage F, Salahub D R 1999 Phys. Rev. B 60 13824

    [19]

    Chang T C 2007 Appl. Phys. Lett. 90 201910

    [20]

    Liang H Y, Upmanyu M 2006 Phys. Rev. Lett. 96 165501

    [21]

    Zhang H W, Wang L, Wang J B, Zhang Z Q, Zheng Y G 2008 Phys. Lett. A 372 3488

    [22]

    Zhao R J, Luo C L 2011 Appl. Phys. Lett. 99 231904

    [23]

    Poynting J H 1909 Proc. R. Soc. A 82 546

    [24]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [25]

    Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414

    [26]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [27]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 物理学报 63 086102]

    [28]

    Treboux G, Lapstun P, Silverbrook K 1999 J. Phys. Chem. B 103 1871

    [29]

    O’Connell M J, Eibergen E E, Doom S K 2005 Nature Mater. 4 412

    [30]

    Nosé S 1984 Mol. Phys. 52 255

    [31]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [32]

    Shen L, Li J 2004 Phys. Rev. B 69 045414

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Golberg D, Costa P M F J, Mitome M, Bando Y 2009 J Mater. Chem. 19 909

    [3]

    Wang J N, Luo X G, Wu T, Chen Y 2014 Nature Commun. 5 3848

    [4]

    Schneider B H, Etaki S, van der Zant H S, Steele G A 2012 Sci. Rep. 2 599

    [5]

    Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Chen G, Dresselhaus M S, Ren Z F 2006 Nature 439 281

    [6]

    Ouyang Y, Peng J C, Wang H, Yi S P 2008 Acta Phys. Sin. 57 0615

    [7]

    Zhang Y, Cao J X, Yang W 2008 Chin. Phys. B 17 1881

    [8]

    Karimov Kh S, Tariq Saeed Chani M, Ahmad Khalid F, Khan A, Khan R 2012 Chin. Phys. B 21 016102

    [9]

    Evoy S, Carr D W, Sekaric A, Parpia J M, Craighead H G 1999 J. Appl. Phys. 86 6072

    [10]

    Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S, Cumings J, Zettl A 2003 Nature 424 408

    [11]

    Tombler T W, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi C S, Tang M, Wu S Y 2000 Nature 405 769

    [12]

    Gartstein Y N, Zakhidov A A, Baughman R H 2003 Phys. Rev. B 68 115415

    [13]

    Ni X G, Wang Y, Zhang Z, Wang X X 2006 Chin. J. Chem. Phys 19 194

    [14]

    Lu J P 1997 Phys. Rev. Lett. 79 1297

    [15]

    Gupta S, Dharamvir K, Jindal V K 2005 Phys. Rev. B 72 165428

    [16]

    Williams P A, Papadakis S J, Patel A M, Falvo M R, Washburn S, Superfine R 2002 Phys. Rev. Lett. 89 255502-1

    [17]

    Cohen-Karni T, Segev L, Srur-Lavi O, Cohen S R, Joselevich E 2006 Nature Nanotech. 1 36

    [18]

    Rochefort A, Avouris P, Lesage F, Salahub D R 1999 Phys. Rev. B 60 13824

    [19]

    Chang T C 2007 Appl. Phys. Lett. 90 201910

    [20]

    Liang H Y, Upmanyu M 2006 Phys. Rev. Lett. 96 165501

    [21]

    Zhang H W, Wang L, Wang J B, Zhang Z Q, Zheng Y G 2008 Phys. Lett. A 372 3488

    [22]

    Zhao R J, Luo C L 2011 Appl. Phys. Lett. 99 231904

    [23]

    Poynting J H 1909 Proc. R. Soc. A 82 546

    [24]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [25]

    Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414

    [26]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [27]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 物理学报 63 086102]

    [28]

    Treboux G, Lapstun P, Silverbrook K 1999 J. Phys. Chem. B 103 1871

    [29]

    O’Connell M J, Eibergen E E, Doom S K 2005 Nature Mater. 4 412

    [30]

    Nosé S 1984 Mol. Phys. 52 255

    [31]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [32]

    Shen L, Li J 2004 Phys. Rev. B 69 045414

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [6] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [7] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [10] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [11] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究. 物理学报, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [12] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [13] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [14] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [15] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [16] 谢根全, 夏 平. 基于微极性弹性力学的碳纳米管中波的传播特性. 物理学报, 2007, 56(12): 7070-7077. doi: 10.7498/aps.56.7070
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究. 物理学报, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
计量
  • 文章访问数:  2576
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-07
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-05-05

(n, n)-(2n, 0)碳纳米管异质结的扭转力学特性

  • 1. 南京师范大学物理科学与技术学院, 南京 210023;
  • 2. 江苏省光电科学技术重点实验室, 南京 210023;
  • 3. 江苏第二师范学院物理与电子工程学院, 南京 210013
    基金项目: 国家自然科学基金青年基金(批准号: 21203097)、江苏省高校自然科学研究项目(批准号: 14KJB140006)和江苏高校优势学科建设工程项目资助的课题.

摘要: 相近直径的锯齿型和扶手椅型碳纳米管可以共轴组合形成5-7碳环交替出现的柱形对称异质结. 本文利用分子动力学方法研究了直径相近且等长锯齿型和扶手椅型碳纳米管形成的(n, n)-(2n, 0)结在扭转过程中的扭矩和轴向应力随扭转角度的变化规律以及应力传递过程. 研究发现, (n, n)-(2n, 0)结扭转应变在达弹性限度内不会产生轴向应力, 该效应对基于碳纳米管扭转特性的纳米振荡器件的设计具有重要意义.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回