搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移

李牧野 李芳 魏来 何志聪 张俊佩 韩俊波 陆培祥

引用本文:
Citation:

CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移

李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥

Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation

Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang
PDF
导出引用
  • 采用时间分辨荧光光谱技术研究了在双光子激发下不同尺寸的量子点与罗丹明B 之间的荧光共振能量转移. 研究结果表明, 在800 nm的双光子激发条件下, 体系间能量转移效率随着供体吸收光谱与受体荧光光谱的光谱重叠程度增加而增加; 理论分析表明, 供体和受体间的Förster半径增加是导致其双光子能量转移效率增大的物理原因. 同时, 研究了罗丹明B浓度对荧光共振能量转移效率的影响. 研究结果表明, 量子点的荧光寿命随着罗丹明B浓度的增加而减小; 量子点与罗丹明B之间的荧光共振能量转移效率随着罗丹明B浓度的增加而增加; 当罗丹明B浓度为3.0×10-5 mol·L-1时, 双光子荧光共振能量转移效率为40.1%.
    Fluorescence resonance energy transfer (FRET) is non-radiation energy transfer that occurs between a donor (D) molecule in an excited state and an acceptor (A) molecule in a ground state by dipole-dipole interactions. The efficiency of FRET is dependent on the extent of spectral overlap between the donor photoluminescence peak and the absorption spectrum of acceptor, the quantum yield of the donor, and the distance between the donor and acceptor molecules. Currently, FRET is commonly used for determining the metal ion, analyzing the protein, biological molecular fluorescence probe, etc. In this study, the FRET between CdTe quantum dots (QDs) with different sizes and Rhodamine B (RhB) in aqueous solution is investigated by using the time-resolved fluorescence test system under two-photon excitation. In this two-photon FRET aqueous system, QD is used as donor while RhB as acceptor. The time resolved two-photon photoluminescence and fluorescence lifetime measurements are performed for analyzing the two-photon-excited luminescence by using a titanium sapphire femtosecond laser with a wavelength of 800 nm, pulse width of 130 fs, repetition frequency of 76 MHz, with the power fixed at 500 mW. The fluorescence spectrum is measured by fluorescence spectrometer and the fluorescence decay curves are recorded by single photon counter. Besides, the steady state photoluminescence is also studied with a JASCO FP-6500 Fluorescence Spectrometer. The result shows that with the increase of spectral overlap of the CdTe emission spectrum and the Rhodamine B absorption spectrum, the FRET efficiency of the QDs-RhB system becomes higher. Specifically, the fluorescence intensity of QDs decreases and the lifetime of QDs becomes shorter while RhB shows the opposite tendency. By means of the Förster theory of energy transfer, the spectral overlap integral J(λ), Foster radius R0 and the FRET efficiency E are calculated and the FRET characteristics of QD-RhB system is characterized. Theoretical analysis reveals that the physical source is the increase of the sample’s Forster radius. Moreover, the relationship between the ratio of acceptor/donor concentration and the FRET efficiency is investigated experimentally. When the ratio of acceptor/donor concentration increases, the lifetime of QDs turns shorter, and the FRET efficiency of the QDs-RhB system becomes higher. The two-photon excited FRET efficiency can reach 40.1% when the concentration of RhB is 3.0×10-5 mol·L-1. This study shows a brighter future in biological and optoelectronic applications.
    • 基金项目: 国家自然科学基金(批准号: 11204222)、湖北省自然科学基金(批准号: 2013CFB316, 2014CFB793)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204222), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2013CFB316, 2014CFB793).
    [1]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013

    [2]

    Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]

    [3]

    Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 物理学报 62 454]

    [4]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 物理学报 55 4139]

    [5]

    Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207

    [6]

    Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102

    [7]

    Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360

    [8]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298

    [9]

    Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263

    [10]

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449

    [11]

    He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 物理学报 63 177301]

    [12]

    Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505

    [13]

    Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811

    [14]

    Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909

    [15]

    Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304

    [16]

    Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224

    [17]

    Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38

    [18]

    Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392

    [19]

    He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]

    [20]

    Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177

    [21]

    Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308

    [22]

    Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481

    [23]

    Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737

  • [1]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013

    [2]

    Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]

    [3]

    Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 物理学报 62 454]

    [4]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 物理学报 55 4139]

    [5]

    Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207

    [6]

    Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102

    [7]

    Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360

    [8]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298

    [9]

    Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263

    [10]

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449

    [11]

    He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 物理学报 63 177301]

    [12]

    Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505

    [13]

    Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811

    [14]

    Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909

    [15]

    Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304

    [16]

    Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224

    [17]

    Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38

    [18]

    Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392

    [19]

    He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]

    [20]

    Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177

    [21]

    Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308

    [22]

    Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481

    [23]

    Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737

  • [1] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [2] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [3] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [4] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究. 物理学报, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [5] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [6] 杜允, 鲁年鹏, 杨虎, 叶满萍, 李超荣. In掺杂氮化亚铜薄膜的电学、光学和结构特性研究. 物理学报, 2013, 62(11): 118104. doi: 10.7498/aps.62.118104
    [7] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [8] 袁文佳, 章岳光, 沈伟东, 马群, 刘旭. 离子束溅射制备Nb2O5光学薄膜的特性研究. 物理学报, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [9] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [10] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [11] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究. 物理学报, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [12] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [13] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [14] 徐 登, 叶莉华, 崔一平, 奚 俊, 李 丽, 王 琼. 基于有机染料盐掺杂薄膜体系的能量转移及光致发光特性研究. 物理学报, 2008, 57(5): 3267-3270. doi: 10.7498/aps.57.3267
    [15] 宋淑芳, 赵德威, 徐 征, 徐叙瑢. 有机多层量子阱的能量转移. 物理学报, 2007, 56(6): 3499-3503. doi: 10.7498/aps.56.3499
    [16] 张 鹏, 周印华, 刘秀芬, 田文晶, 李 敏, 张 国. PVK:DBVP掺杂体系的能量转移及发光性质的研究. 物理学报, 2006, 55(10): 5494-5498. doi: 10.7498/aps.55.5494
    [17] 罗向东, 孙炳华, 徐仲英. GaNxAs1-x(x<0.01)中合金态的光学特性. 物理学报, 2005, 54(5): 2385-2388. doi: 10.7498/aps.54.2385
    [18] 许海军, 富笑男, 孙新瑞, 李新建. 硅纳米孔柱阵列的结构和光学特性研究. 物理学报, 2005, 54(5): 2352-2357. doi: 10.7498/aps.54.2352
    [19] 郭少锋, 陆启生, 程湘爱, 周 萍, 邓少永, 银 燕. 反射光中Stokes成分对受激布里渊散射过程的影响. 物理学报, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
    [20] 冯志芳, 王义全, 许兴胜, 江少林, 郝伟, 程丙英, 张道中. 光子晶体中双通道之间能量的转移. 物理学报, 2004, 53(1): 62-65. doi: 10.7498/aps.53.62
计量
  • 文章访问数:  3405
  • PDF下载量:  942
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-28
  • 修回日期:  2014-12-28
  • 刊出日期:  2015-05-05

CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移

  • 1. 武汉工程大学理学院, 光学信息技术实验室, 武汉 430073;
  • 2. 华中科技大学物理学院, 武汉 430074;
  • 3. 华中科技大学, 国家脉冲强磁场科学中心, 武汉 430074
    基金项目: 国家自然科学基金(批准号: 11204222)、湖北省自然科学基金(批准号: 2013CFB316, 2014CFB793)资助的课题.

摘要: 采用时间分辨荧光光谱技术研究了在双光子激发下不同尺寸的量子点与罗丹明B 之间的荧光共振能量转移. 研究结果表明, 在800 nm的双光子激发条件下, 体系间能量转移效率随着供体吸收光谱与受体荧光光谱的光谱重叠程度增加而增加; 理论分析表明, 供体和受体间的Förster半径增加是导致其双光子能量转移效率增大的物理原因. 同时, 研究了罗丹明B浓度对荧光共振能量转移效率的影响. 研究结果表明, 量子点的荧光寿命随着罗丹明B浓度的增加而减小; 量子点与罗丹明B之间的荧光共振能量转移效率随着罗丹明B浓度的增加而增加; 当罗丹明B浓度为3.0×10-5 mol·L-1时, 双光子荧光共振能量转移效率为40.1%.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回