搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法

孟伟东 孙丽存 翟影 杨瑞芬 普小云

引用本文:
Citation:

用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法

孟伟东, 孙丽存, 翟影, 杨瑞芬, 普小云

Rapid measurement of the diffusion coefficient of liquids using a liquid-core cylindrical lens:a method for analysing an instantaneous diffusive picture

Meng Wei-Dong, Sun Li-Cun, Zhai Ying, Yang Rui-Fen, Pu Xiao-Yun
PDF
导出引用
  • 本文提出了一种快速测量液相扩散系数的方法, 该方法以液芯柱透镜作为液相扩散池和成像元件, 利用柱透镜成像过程中特有的折射率空间分辨测量能力, 只需记录一幅瞬态扩散图像, 根据图像的像宽与折射率的对应关系, 基于扩散定律快速计算出液相扩散系数. 实验研究了室温(25℃)下乙二醇和纯水间的扩散过程, 用折射率空间分布法测量了扩散系数, 和其他测量方法得到的结果进行了分析对比, 结果表明:用折射率空间分布法测量液相扩散系数具有数据采集耗时短(~20 ms)、测量速度快(1 s)、精度高(相对误差3%)和操作简单的特点, 为快速测定液相扩散系数提供了一种有效的新方法.
    This paper studies the equivalent refractive index method and other methods to measure the liquid diffusion coefficient. Based on this, a quick method to measure the liquid diffusion coefficient is proposed, i.e. using a specially designed asymmetric liquid-core cylindrical lens as both diffusive pool and imaging element. By means of this system with the liquid-core cylindrical lens to measure the diffusion coefficient, we can eliminate the spherical aberration and improve the accuracy in refractive index measurement. Based on the spatially resolving ability of the cylindrical lens in measuring the refractive index, only one instantaneous diffusive picture is required. Depending on the correspondence between the image width and the refractive index, we thus can quickly calculate the diffusion coefficient D by the Ficks second law. Then the diffusive process of ethylene glycol in water at 25℃ is investigated by this method. We calculate the diffusion coefficient between 660-3000 s with the method to analyse an instantaneous diffusion picture. At the beginning, injection will cause the liquid turbulent, and thus create a larger diffusion coefficient. In the course of diffusion, the influence of turbulence on the diffusion coefficient gradually decreases, but the image narrowing can make inaccurate results. Therefore, this method is required to be used at an appropriate time and an appropriate position to reduce experimental errors. After repeated experiments we can conclude that, between 1500-2700 s we may select the appropriate measurement of location for measuring liquid diffusion coefficient by the method to analyze an instantaneous diffusive picture. This not only can avoid the effect of turbulence but also avoid the effect of fewer sampling points. Compared with other methods reported in the literature, the results show that this method is characterized by short time (~20 ms) in data acquisition, faster measurement ( 1 s), high-accuracy (relative error 3%), and easy operation, thus providing a new method for measuring the diffusion coefficient of liquids rapidly.
    • 基金项目: 国家自然科学基金(批准号:11164033,61465014)、云南省应用基础研究基金(批准号:2011FA006)和云南省高校科技创新团队支持计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164033, 61465014), the Applied Basic Research Foundation of Yunnan Province, China (Grant No. 2011FA006), and the Items on Research Team of Science and Technology in Yunnan (IRTSTYN) Province.
    [1]

    Cussler E L 1997 Diffusion-Mass Transfer in Fluid Systems (Cambridge:Cambridge University Press) 13

    [2]

    Zuo M, Han Y L, Qi L, Chen Y 2007 Chinese Science Bulletin. 52 3325

    [3]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 083101

    [4]

    Ahmed A, Wu J T 2011 Chin. Phys. B 20 106601

    [5]

    Zhang S Y, Bao S L, Kang X J, Gao S 2013 Acta Phys. Sin. 62 208703 (in Chinese) [张首誉, 包尚联, 亢孝俭, 高嵩 2013 物理学报 62 208703]

    [6]

    Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 59 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 物理学报 59 7431]

    [7]

    Radi Z, L ábár J L, Barna P B 1998 Appl. Phys. Lett. 73 3220

    [8]

    Bek W J, Muttzal M K 2006 Transport Phenomena (New York:Wiley) p75

    [9]

    Zhao C W, Ma P S, He M X 2002 Chemical Industry and Engineering 19 374 (in Chinese) [赵长伟,马沛生,何明霞 2002 化学工业与工程 19 374]

    [10]

    Cheng Y, Wei L, Chi W 2004 J. Phys. Chem. B 108 11866

    [11]

    Culbertson C T, Jacobson S C, Ransey J M 2002 Talanta 56 365

    [12]

    WANG J H 1952 J. Am. Chem. Soc. 74 182

    [13]

    Chhaniwal V K, Anand A, Girhe S, Patil D, Subrahmanyam N, Narayanamurthy C S 2003 J. Opt. A:Pure Appl. Opt. 5 S329

    [14]

    Ghaleh K J, Tavassoly M T, Mansour N 2004 J. Phys.D:Appl. Phys. 37 1993

    [15]

    Li Q, Pu X Y 2013 Acta Phys. Sin. 62 094206 (in Chinese) [李强, 普小云 2013 物理学报 62 094206]

    [16]

    Li Q, Sun L C, Meng W D, Pu X Y 2012 Chinese Journal Of Lasers 39 1008005 (in Chinese) [李强, 孙丽存, 孟伟东, 普小云 2012 中国激光 39 1008005]

    [17]

    Li Q, Pu X. Y, Yang R. F Q, Zhai Y 2014 Chin. Phys. Lett. 31 054203

    [18]

    Hills E E, Abraham M H, Hersey A 2011 Fluid Phase Equilib. 303 45

  • [1]

    Cussler E L 1997 Diffusion-Mass Transfer in Fluid Systems (Cambridge:Cambridge University Press) 13

    [2]

    Zuo M, Han Y L, Qi L, Chen Y 2007 Chinese Science Bulletin. 52 3325

    [3]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 083101

    [4]

    Ahmed A, Wu J T 2011 Chin. Phys. B 20 106601

    [5]

    Zhang S Y, Bao S L, Kang X J, Gao S 2013 Acta Phys. Sin. 62 208703 (in Chinese) [张首誉, 包尚联, 亢孝俭, 高嵩 2013 物理学报 62 208703]

    [6]

    Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 59 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 物理学报 59 7431]

    [7]

    Radi Z, L ábár J L, Barna P B 1998 Appl. Phys. Lett. 73 3220

    [8]

    Bek W J, Muttzal M K 2006 Transport Phenomena (New York:Wiley) p75

    [9]

    Zhao C W, Ma P S, He M X 2002 Chemical Industry and Engineering 19 374 (in Chinese) [赵长伟,马沛生,何明霞 2002 化学工业与工程 19 374]

    [10]

    Cheng Y, Wei L, Chi W 2004 J. Phys. Chem. B 108 11866

    [11]

    Culbertson C T, Jacobson S C, Ransey J M 2002 Talanta 56 365

    [12]

    WANG J H 1952 J. Am. Chem. Soc. 74 182

    [13]

    Chhaniwal V K, Anand A, Girhe S, Patil D, Subrahmanyam N, Narayanamurthy C S 2003 J. Opt. A:Pure Appl. Opt. 5 S329

    [14]

    Ghaleh K J, Tavassoly M T, Mansour N 2004 J. Phys.D:Appl. Phys. 37 1993

    [15]

    Li Q, Pu X Y 2013 Acta Phys. Sin. 62 094206 (in Chinese) [李强, 普小云 2013 物理学报 62 094206]

    [16]

    Li Q, Sun L C, Meng W D, Pu X Y 2012 Chinese Journal Of Lasers 39 1008005 (in Chinese) [李强, 孙丽存, 孟伟东, 普小云 2012 中国激光 39 1008005]

    [17]

    Li Q, Pu X. Y, Yang R. F Q, Zhai Y 2014 Chin. Phys. Lett. 31 054203

    [18]

    Hills E E, Abraham M H, Hersey A 2011 Fluid Phase Equilib. 303 45

  • [1] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [4] 罗旭东, 牛胜利, 左应红. 典型甚低频电磁波对辐射带高能电子的散射损失效应. 物理学报, 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [5] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [6] 张振霞, 王辰宇, 李强, 吴书贵. 准线性扩散系数与空间高能电子特征物理量的关系研究. 物理学报, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
    [7] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [8] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法. 物理学报, 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [9] 李强, 普小云. 用毛细管成像法测量液相扩散系数——等折射率薄层测量方法. 物理学报, 2013, 62(9): 094206. doi: 10.7498/aps.62.094206
    [10] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [11] 王振中, 王楠, 姚文静. 低扩散系数对Pd77Cu6Si17合金易非晶化的影响. 物理学报, 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [12] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 在不同扩散系数下反应扩散平面波的折射. 物理学报, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [13] 卢宏, 覃莉, 包景东. 周期场中非各态历经布朗运动. 物理学报, 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [14] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [15] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [16] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [17] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究. 物理学报, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [18] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1). 物理学报, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [19] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] 赵建华, 刘日平, 周镇华, 张湘义, 张 明, 许应凡, 王文魁. 一种测量液态金属扩散系数的新方法——固/液-液/固复合三层膜法. 物理学报, 1999, 48(3): 416-420. doi: 10.7498/aps.48.416
计量
  • 文章访问数:  3200
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-30
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-06-05

用液芯柱透镜快速测量液相扩散系数-折射率空间分布瞬态测量法

  • 1. 云南大学物理科学技术学院物理系, 昆明 650091
    基金项目: 国家自然科学基金(批准号:11164033,61465014)、云南省应用基础研究基金(批准号:2011FA006)和云南省高校科技创新团队支持计划资助的课题.

摘要: 本文提出了一种快速测量液相扩散系数的方法, 该方法以液芯柱透镜作为液相扩散池和成像元件, 利用柱透镜成像过程中特有的折射率空间分辨测量能力, 只需记录一幅瞬态扩散图像, 根据图像的像宽与折射率的对应关系, 基于扩散定律快速计算出液相扩散系数. 实验研究了室温(25℃)下乙二醇和纯水间的扩散过程, 用折射率空间分布法测量了扩散系数, 和其他测量方法得到的结果进行了分析对比, 结果表明:用折射率空间分布法测量液相扩散系数具有数据采集耗时短(~20 ms)、测量速度快(1 s)、精度高(相对误差3%)和操作简单的特点, 为快速测定液相扩散系数提供了一种有效的新方法.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回