搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用单层密排的纳米球提高发光二极管的出光效率

陈湛旭 万巍 何影记 陈耿炎 陈泳竹

引用本文:
Citation:

利用单层密排的纳米球提高发光二极管的出光效率

陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹

Light-extraction enhancement of GaN-based LEDs by closely-packed nanospheres monolayer

Chen Zhan-Xu, Wan Wei, He Ying-Ji, Chen Geng-Yan, Chen Yong-Zhu
PDF
导出引用
  • 在发光二极管(LED)的透明电极层上制作单层六角密排的聚苯乙烯(polystyrene, PS) 纳米球, 研究提高GaN基蓝光LED的出光效率. 采用自组装的方法在透明电极铟锡氧化物层上制备了直径分别约为250, 300, 450, 600和950 nm的PS纳米球, 并且开展了电致发光的研究. 结果表明, 在LED的透明电极层上附有PS纳米球能有效地提高LED的出光效率; 当PS纳米球的直径与出射光的波长比较接近时, LED的出光效率最优. 与参考样品相比, 在20 mA和150 mA工作电流下, 附有PS纳米球的样品的发光效率分别增加1.34倍和1.25倍. 三维时域有限差分方法计算表明, 该出光增强主要归因于附有PS纳米球的LED结构可以增大LED结构的光输出临界角, 从而提高LED的出光效率. 因此, 这是一种低成本的实现高效率LED的方法.
    GaN based light-emitting diodes (LEDs) have been attracting a great deal of interest due to their capability in emitting a spectrum from ultraviolet to green and their applications in traffic signals, displays and solid-state lighting. However, the high efficiency of LED is still obstructed by light-extraction efficiency. In this work, we propose that light-extraction efficiency of GaN-based blue LED should be improved by a self-assembled monolayer of polystyrene spheres. The GaN-based LED grown on sapphire substrate emits the light mainly from the indium tin oxide (ITO) transparent electrode. And the hexagonal closely-packed polystyrene sphere monolayer is formed onto the ITO layer. In order to study the light-extraction efficiency affected by the size of nanosphere, nanosphere monolayers of different sizes are prepared onto the ITO layer, and the diameters of the polystyrene spheres are 250, 300, 450, 600 and 950 nm, respectively. The electroluminescence results show that using polystyrene sphere monolayer can improve the light-extraction efficiency compared with using the conventional LEDs, and the light-extraction efficiency reaches a maximum when the average size of spheres (450 nm) approximates to the wavelength (465 nm) of that light. The light output power of the LED with polystyrene sphere of the optimum size is experimentally enhanced by 1.34 and 1.25 times under the injection currents of 20 and 150 mA, respectively. In order to explain the physical mechanism of the light-extraction enhancement, we carried out the three-dimensional finite difference time-domain simulation thereby calculate the transmission spectrum of the structure. The results of simulation show that the incident light beyond the critical angle can be partly extracted when the surface of LED has a polystyrene sphere monolayer, leading to an enhanced light-extraction efficiency. So the nanosphere monolayer acts as a two-dimensional diffraction lattice which behaves as a light scattering medium for the light propagating in a waveguiding mode within the LED. Furthermore, the polystyrene nanosphere has the advantages of low-cost and high-precision, and is very suitable for large area preparation on LEDs. So this method is a simple and cost-effective method to improve the light-extraction efficiency from LED.
    • 基金项目: 国家自然科学基金(批准号: 11174061, 11404067, 61475038, 11447181)和广东省自然科学基金(批准号: S2013010015795)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174061, 11404067, 61475038, 11447181) and the Natural Science Foundation of Guangdong Province, China (Grant No. S2013010015795).
    [1]

    Schubert E F, Kim J K 2005 Science 308 1274

    [2]

    Okamoto K, Kawakami Y 2009 IEEE J. Sel. Top. Quantum Electron. 15 1199

    [3]

    Lin C F, Zheng J H, Yang Z J, Dai J J, Lin D Y, Chang C Y, Lai Z X, Hong C S 2006 Appl. Phys. Lett. 88 083121

    [4]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006 Appl. Phys. Lett. 89 071109

    [5]

    An H M, Sim J I, Shin K S, Sung Y M, Kim T G 2012 IEEE J. Sel. Top. Quantum Electron. 48 891

    [6]

    Park J H, Park J W, Park I K, Park Il-K, Kim D Y 2012 Appl. Phys. Express 5 022101

    [7]

    Huang S M, Yao Y, Jin C, Sun Z, Dong Z J 2008 Displays 29 254

    [8]

    Kim J K, Gessmann T, Schubert E F, Xi J Q, Luo H, Cho J, Sone C, Park Y 2006 Appl. Phys. Lett. 88 013501

    [9]

    Lai C F, Chao C H, Kuo H C, Yen H H, Lee C E, Yeh W Y 2009 Appl. Phys. Lett. 94 123106

    [10]

    Kim J Y, Kwon M K, Lee K S, Park S J, Kim S H, Lee K D 2007 Appl. Phys. Lett. 91 181109

    [11]

    Gao H, Kong F M, Li K, Chen X L, Ding Q A, Sun J 2012 Acta Phys. Sin. 61 127807 (in Chinese) [高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静 2012 物理学报 61 127807]

    [12]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [13]

    He A H, Zhang Y, Zhu X H, Chen X W, Fan G H, He M 2010 Chin. Phys. B 19 068101

    [14]

    Kim D H, Cho C O, Roh Y G, Jeon H, Park Y S, Cho J, Im J S, Sone C, Park Y, Choi W J, Park Q H 2005 Appl. Phys. Lett. 87 203508

    [15]

    Chen A, Chua S J, Chen P, Chen X Y, Jian L K 2006 Nanotechnology 17 3903

    [16]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [17]

    Cao X A, Pearton S J, Zhang A P, Dang G T, Ren F, Shul R J, Zhang L, Hickman R, van Hove J M 1999 Appl. Phys. Lett. 75 2569

    [18]

    Kim J Y, Kwon M K, Park S J, Kim S H, Lee K D 2010 Appl. Phys. Lett. 96 251103

    [19]

    Jeong H, Park D J, Lee H S, Ko Y H, Yu J S, Choi S B, Lee D S, Suh E K, Jeong M S 2014 Nanoscale 6 4371

    [20]

    Ye B U, Kim B J, Song Y H, Son J H, Yu H K, Kim M H, Lee J L, Baik J M 2012 Adv. Funct. Mater. 22 632

    [21]

    Zhu Z C, Liu B, Cheng C W, Chen H, Gu M, Yi Y S, Mao R H 2014 Phys. Status Solidi A 211 1583

    [22]

    Yao Y, Yao J, Nnarasimhan V K, Ruan Z, Xie C, Fan S, Cui Y 2012 Nature Commun. 3 664

    [23]

    Fang C Y, Liu Y L, Lee Y C, Chen H L, Wan D H, Yu C C 2013 Adv. Funct. Mater. 23 1412

    [24]

    Lee H K, Ko Y H, Rama Raju G S, Yu J S 2012 Opt. Express 20 25058

    [25]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

  • [1]

    Schubert E F, Kim J K 2005 Science 308 1274

    [2]

    Okamoto K, Kawakami Y 2009 IEEE J. Sel. Top. Quantum Electron. 15 1199

    [3]

    Lin C F, Zheng J H, Yang Z J, Dai J J, Lin D Y, Chang C Y, Lai Z X, Hong C S 2006 Appl. Phys. Lett. 88 083121

    [4]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006 Appl. Phys. Lett. 89 071109

    [5]

    An H M, Sim J I, Shin K S, Sung Y M, Kim T G 2012 IEEE J. Sel. Top. Quantum Electron. 48 891

    [6]

    Park J H, Park J W, Park I K, Park Il-K, Kim D Y 2012 Appl. Phys. Express 5 022101

    [7]

    Huang S M, Yao Y, Jin C, Sun Z, Dong Z J 2008 Displays 29 254

    [8]

    Kim J K, Gessmann T, Schubert E F, Xi J Q, Luo H, Cho J, Sone C, Park Y 2006 Appl. Phys. Lett. 88 013501

    [9]

    Lai C F, Chao C H, Kuo H C, Yen H H, Lee C E, Yeh W Y 2009 Appl. Phys. Lett. 94 123106

    [10]

    Kim J Y, Kwon M K, Lee K S, Park S J, Kim S H, Lee K D 2007 Appl. Phys. Lett. 91 181109

    [11]

    Gao H, Kong F M, Li K, Chen X L, Ding Q A, Sun J 2012 Acta Phys. Sin. 61 127807 (in Chinese) [高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静 2012 物理学报 61 127807]

    [12]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [13]

    He A H, Zhang Y, Zhu X H, Chen X W, Fan G H, He M 2010 Chin. Phys. B 19 068101

    [14]

    Kim D H, Cho C O, Roh Y G, Jeon H, Park Y S, Cho J, Im J S, Sone C, Park Y, Choi W J, Park Q H 2005 Appl. Phys. Lett. 87 203508

    [15]

    Chen A, Chua S J, Chen P, Chen X Y, Jian L K 2006 Nanotechnology 17 3903

    [16]

    Peng J, Xu Z M, Wu X F, Sun T Y 2013 Acta Phys. Sin. 62 036104 (in Chinese) [彭静, 徐智谋, 吴小峰, 孙堂友 2013 物理学报 62 036104]

    [17]

    Cao X A, Pearton S J, Zhang A P, Dang G T, Ren F, Shul R J, Zhang L, Hickman R, van Hove J M 1999 Appl. Phys. Lett. 75 2569

    [18]

    Kim J Y, Kwon M K, Park S J, Kim S H, Lee K D 2010 Appl. Phys. Lett. 96 251103

    [19]

    Jeong H, Park D J, Lee H S, Ko Y H, Yu J S, Choi S B, Lee D S, Suh E K, Jeong M S 2014 Nanoscale 6 4371

    [20]

    Ye B U, Kim B J, Song Y H, Son J H, Yu H K, Kim M H, Lee J L, Baik J M 2012 Adv. Funct. Mater. 22 632

    [21]

    Zhu Z C, Liu B, Cheng C W, Chen H, Gu M, Yi Y S, Mao R H 2014 Phys. Status Solidi A 211 1583

    [22]

    Yao Y, Yao J, Nnarasimhan V K, Ruan Z, Xie C, Fan S, Cui Y 2012 Nature Commun. 3 664

    [23]

    Fang C Y, Liu Y L, Lee Y C, Chen H L, Wan D H, Yu C C 2013 Adv. Funct. Mater. 23 1412

    [24]

    Lee H K, Ko Y H, Rama Raju G S, Yu J S 2012 Opt. Express 20 25058

    [25]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

  • [1] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [2] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [3] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [4] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [7] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [8] 弓志娜, 云峰, 丁文, 张烨, 郭茂峰, 刘硕, 黄亚平, 刘浩, 王帅, 冯仑刚, 王江腾. 光致电化学法提高垂直结构发光二极管出光效率的研究. 物理学报, 2015, 64(1): 018501. doi: 10.7498/aps.64.018501
    [9] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [10] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [11] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [12] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [13] 陈依新, 沈光地, 高志远, 郭伟玲, 张光沉, 韩军, 朱彦旭. AlGaInP大功率发光二极管发光效率与结温的关系. 物理学报, 2011, 60(8): 087206. doi: 10.7498/aps.60.087206
    [14] 朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟. 量子阱结构对有机电致发光器件效率的影响. 物理学报, 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [15] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率. 物理学报, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [16] 陈健, 李小丽, 李海华, 王庆康. 基于正方和六角排列结构光子晶体对发光二极管出光效率的研究. 物理学报, 2009, 58(9): 6216-6221. doi: 10.7498/aps.58.6216
    [17] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [18] 熊传兵, 江风益, 王 立, 方文卿, 莫春兰. 硅衬底垂直结构InGaAlN多量子阱发光二极管电致发光谱的干涉现象研究. 物理学报, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [19] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [20] 侯林涛, 侯 琼, 彭俊彪, 曹 镛. 三元共聚物饱和红色电致发光研究. 物理学报, 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
计量
  • 文章访问数:  2837
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-26
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-07-05

利用单层密排的纳米球提高发光二极管的出光效率

  • 1. 广东技术师范学院电子与信息学院, 广州 510665;
  • 2. 广东技术师范学院机电学院, 广州 510665
    基金项目: 国家自然科学基金(批准号: 11174061, 11404067, 61475038, 11447181)和广东省自然科学基金(批准号: S2013010015795)资助的课题.

摘要: 在发光二极管(LED)的透明电极层上制作单层六角密排的聚苯乙烯(polystyrene, PS) 纳米球, 研究提高GaN基蓝光LED的出光效率. 采用自组装的方法在透明电极铟锡氧化物层上制备了直径分别约为250, 300, 450, 600和950 nm的PS纳米球, 并且开展了电致发光的研究. 结果表明, 在LED的透明电极层上附有PS纳米球能有效地提高LED的出光效率; 当PS纳米球的直径与出射光的波长比较接近时, LED的出光效率最优. 与参考样品相比, 在20 mA和150 mA工作电流下, 附有PS纳米球的样品的发光效率分别增加1.34倍和1.25倍. 三维时域有限差分方法计算表明, 该出光增强主要归因于附有PS纳米球的LED结构可以增大LED结构的光输出临界角, 从而提高LED的出光效率. 因此, 这是一种低成本的实现高效率LED的方法.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回