搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆管结构中周向导波非线性效应的模式展开分析

高广健 邓明晰 李明亮

引用本文:
Citation:

圆管结构中周向导波非线性效应的模式展开分析

高广健, 邓明晰, 李明亮

Modal expansion analysis of nonlinear circumferential guided wave propagation in a circular tube

Gao Guang-Jian, Deng Ming-Xi, Li Ming-Liang
PDF
导出引用
  • 在二阶微扰近似条件下, 采用导波模式展开分析方法研究了圆管结构中周向导波的非线性效应. 伴随基频周向导波传播所发生的二次谐波, 可视为由一系列二倍频周向导波模式叠加而成. 从动量定理出发, 结合柱坐标系下非线性应力张量及其散度的数学表达式, 针对圆管中某一基频周向导波模式, 推导出相应的二倍频应力张量及二倍频彻体驱动力的数学表达式, 建立了确定二倍频周向导波模式展开系数的控制方程, 得到了伴随基频周向导波传播所发生的二次谐波声场的形式解. 理论分析和数值计算表明, 当构成二次谐波声场的某一二倍频周向导波模式与基频周向导波的相速度匹配时, 该二倍频周向导波模式的位移振幅表现出随传播周向角积累增长的性质; 当两者的相速度失配时, 二倍频周向导波的振幅随传播周向角表现出“拍”效应.
    Within the second-order perturbation approximation, the nonlinear effect of primary circumferential guided wave propagation in a circular tube is investigated using modal expansion analysis for waveguide excitation. The nonlinearity of the wave equation governing the wave propagation ensures the second-harmonic generation accompanying primary circumferential guided wave propagation. This nonlinearity may be treated as a second-order perturbation of the linear elastic response. The fields of the second harmonics of primary circumferential guided wave propagation are considered as superpositions of the fields of a series of double frequency circumferential guided wave (DFCGW) modes. Based on the momentum theorem and mathematical formulae of nonlinear stress tensor and its divergence under the cylindrical coordinate system, the mathematical expressions of the corresponding double frequency traction stress tensors and bulk driving forces are deduced for a certain primary circumferential guided wave mode. Subsequently, the equation governing the DFCGW mode expansion coefficient is established. Finally, the mathematical expression of second-harmonic field of the primary circumferential guided wave mode in a tube is derived. The results of the theoretical analyses and numerical calculations indicate that the degree of cumulative growth of the DFCGW mode with circumferential angle is obviously influenced by that of phase velocity matching between the primary and double frequency wave modes. It is found that the amplitude of the DFCGW mode can grow with circumferential angle when its phase velocity matches with that of the primary circumferential guided wave, and that the amplitude of the DFCGW mode will show a beat effect with circumferential angle when its phase velocity is not equal to that of the primary wave mode. The DFCGW mode, whose phase velocity matches with that of the primary wave mode, plays a dominant role in the field of second harmonic generated by the primary wave mode propagation, and the contribution of the other DFCGW modes to the said second-harmonic field is negligible after the primary wave mode has propagated some circumferential angle.
      通信作者: 邓明晰, dengmx65@yahoo.com
    • 基金项目: 国家自然科学基金(批准号: 11474361, 11274388)资助的课题.
      Corresponding author: Deng Ming-Xi, dengmx65@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361, 11274388).
    [1]

    Gazis D C 1959 J. Acoust. Soc. Am. 31 568

    [2]

    Sun H J, Lin Z, Zhao D Y 2009 Nondestruct. Test. 31 68(in Chinese) [孙海蛟, 林哲, 赵德有 2009 无损检测 31 68]

    [3]

    Xu H, Wang B, Jiang X J 2009 J. Power Eng. 29 1018(in Chinese) [徐鸿, 王冰, 姜秀娟 2009 动力工程 29 1018]

    [4]

    Ta D A, Wang W Q, Wang Y Y 2009 Ultrasound Med. Biol. 35 641

    [5]

    Liu Y, Lissenden C J, Rose J L 2013 Proc. SPIE 8695 86950S-1

    [6]

    Qu J M, Berthelot Y, Li Z 1996 Rev. Prog. Quant. Nondestr. Eval. 15A 169

    [7]

    Liu G, Qu J M 1998 ASME J. Appl. Mech. 65 424

    [8]

    Valle C, Qu J M, Jacobs L J 1997 Int. J. Eng. Sci. 37 1369

    [9]

    Zhang H L, Yin X C 2007 Acta Mech. Solida Sin. 20 110

    [10]

    Liu Y, Li Z, Gong K 2012 Mech. Syst. Signal Pr. 20 157

    [11]

    Deng M X 1998 J. Appl. Phys. 84 3500

    [12]

    Deng M X 1999 J. Appl. Phys. 85 3051

    [13]

    Deng M X, Liu Z Q 2002 Appl. Phys. Lett. 81 1916

    [14]

    Deng M X 2003 J. Appl. Phys. 94 4152

    [15]

    Lima W J, Hamilton M F 2003 J. Sound Vib. 265 819

    [16]

    Deng M X, Xiang Y X 2010 Chin. Phys. B 19 114302

    [17]

    Xiang Y X, Deng M X 2008 Chin. Phys. B 17 4232

    [18]

    Deng M X, Xiang Y X, Liu L B 2011 Chin. Phys. Lett. 28 074301

    [19]

    Srivastava A, Bartoli I, Salamone S, di Lanza S F 2010 J. Acoust. Soc. Am. 127 2790

    [20]

    Deng M X 2006 Nnlinear Lamb Waves in Solid Plates (Beijing: Science Press) pp12-43 (in Chinese) [邓明晰 2006 固体板中的非线性兰姆波 (北京: 科学出版社) 第12–43页]

    [21]

    Chillara V K, Lissenden C L 2013 Ultrasonics 53 862

    [22]

    Deng M X 2005 Acta Acust. 30 132(in Chinese) [邓明晰 2005 声学学报 30 132]

    [23]

    Rose J L 1999 Ultrasonic Waves in Solid Media (Cambridge: Cambridge Univercity Press) pp35-41

  • [1]

    Gazis D C 1959 J. Acoust. Soc. Am. 31 568

    [2]

    Sun H J, Lin Z, Zhao D Y 2009 Nondestruct. Test. 31 68(in Chinese) [孙海蛟, 林哲, 赵德有 2009 无损检测 31 68]

    [3]

    Xu H, Wang B, Jiang X J 2009 J. Power Eng. 29 1018(in Chinese) [徐鸿, 王冰, 姜秀娟 2009 动力工程 29 1018]

    [4]

    Ta D A, Wang W Q, Wang Y Y 2009 Ultrasound Med. Biol. 35 641

    [5]

    Liu Y, Lissenden C J, Rose J L 2013 Proc. SPIE 8695 86950S-1

    [6]

    Qu J M, Berthelot Y, Li Z 1996 Rev. Prog. Quant. Nondestr. Eval. 15A 169

    [7]

    Liu G, Qu J M 1998 ASME J. Appl. Mech. 65 424

    [8]

    Valle C, Qu J M, Jacobs L J 1997 Int. J. Eng. Sci. 37 1369

    [9]

    Zhang H L, Yin X C 2007 Acta Mech. Solida Sin. 20 110

    [10]

    Liu Y, Li Z, Gong K 2012 Mech. Syst. Signal Pr. 20 157

    [11]

    Deng M X 1998 J. Appl. Phys. 84 3500

    [12]

    Deng M X 1999 J. Appl. Phys. 85 3051

    [13]

    Deng M X, Liu Z Q 2002 Appl. Phys. Lett. 81 1916

    [14]

    Deng M X 2003 J. Appl. Phys. 94 4152

    [15]

    Lima W J, Hamilton M F 2003 J. Sound Vib. 265 819

    [16]

    Deng M X, Xiang Y X 2010 Chin. Phys. B 19 114302

    [17]

    Xiang Y X, Deng M X 2008 Chin. Phys. B 17 4232

    [18]

    Deng M X, Xiang Y X, Liu L B 2011 Chin. Phys. Lett. 28 074301

    [19]

    Srivastava A, Bartoli I, Salamone S, di Lanza S F 2010 J. Acoust. Soc. Am. 127 2790

    [20]

    Deng M X 2006 Nnlinear Lamb Waves in Solid Plates (Beijing: Science Press) pp12-43 (in Chinese) [邓明晰 2006 固体板中的非线性兰姆波 (北京: 科学出版社) 第12–43页]

    [21]

    Chillara V K, Lissenden C L 2013 Ultrasonics 53 862

    [22]

    Deng M X 2005 Acta Acust. 30 132(in Chinese) [邓明晰 2005 声学学报 30 132]

    [23]

    Rose J L 1999 Ultrasonic Waves in Solid Media (Cambridge: Cambridge Univercity Press) pp35-41

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] 李朝刚, 汪茂胜, 方泉, 彭雪城, 黄万霞. 表象变换和久期微扰理论在耦合杜芬方程中的应用. 物理学报, 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [5] 苏娜娜, 韩庆邦, 蒋謇. 无限流体中孔隙介质圆柱周向导波的传播特性. 物理学报, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] 李明亮, 邓明晰, 高广健. 复合圆管界面特性对周向超声导波二次谐波发生效应的影响分析. 物理学报, 2016, 65(19): 194301. doi: 10.7498/aps.65.194301
    [8] 高广健, 邓明晰, 李明亮, 刘畅. 管间界面特性对周向超声导波传播特性的影响. 物理学报, 2015, 64(22): 224301. doi: 10.7498/aps.64.224301
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [10] 祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延. 在色散渐减光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [11] 肖齐, 王珺, 郭霞生, 章东. 固体粗糙界面与超声的非线性相互作用研究. 物理学报, 2013, 62(9): 094301. doi: 10.7498/aps.62.094301
    [12] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [13] 吴洪, 王燕玲, 丁良恩. 双色场下紫外超短脉冲的频谱展宽. 物理学报, 2010, 59(6): 3973-3978. doi: 10.7498/aps.59.3973
    [14] 张丽平, 李海宁, 吴 洪, 李 贤, 丁良恩. Ar气中超连续谱产生的研究. 物理学报, 2008, 57(2): 904-908. doi: 10.7498/aps.57.904
    [15] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [16] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] 祝 娅, 周 倩, 田 强. 非线性Kronig-Penney超晶格的二维实映射分析. 物理学报, 2005, 54(1): 343-347. doi: 10.7498/aps.54.343
    [18] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [19] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
    [20] 刘启明, 赵修建, 干福熹. Ge-As-S体系玻璃中光学二次谐波发生及其极化机理分析. 物理学报, 2000, 49(9): 1726-1730. doi: 10.7498/aps.49.1726
计量
  • 文章访问数:  3296
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-09-05

圆管结构中周向导波非线性效应的模式展开分析

    基金项目: 国家自然科学基金(批准号: 11474361, 11274388)资助的课题.

摘要: 在二阶微扰近似条件下, 采用导波模式展开分析方法研究了圆管结构中周向导波的非线性效应. 伴随基频周向导波传播所发生的二次谐波, 可视为由一系列二倍频周向导波模式叠加而成. 从动量定理出发, 结合柱坐标系下非线性应力张量及其散度的数学表达式, 针对圆管中某一基频周向导波模式, 推导出相应的二倍频应力张量及二倍频彻体驱动力的数学表达式, 建立了确定二倍频周向导波模式展开系数的控制方程, 得到了伴随基频周向导波传播所发生的二次谐波声场的形式解. 理论分析和数值计算表明, 当构成二次谐波声场的某一二倍频周向导波模式与基频周向导波的相速度匹配时, 该二倍频周向导波模式的位移振幅表现出随传播周向角积累增长的性质; 当两者的相速度失配时, 二倍频周向导波的振幅随传播周向角表现出“拍”效应.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回