搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强脉冲电子束辐照材料表面形貌演化的模拟

喻晓 沈杰 钟昊玟 张洁 张高龙 张小富 颜莎 乐小云

引用本文:
Citation:

强脉冲电子束辐照材料表面形貌演化的模拟

喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云

Simulation on surface morphology evolution of metal targets irradiated by intense pulsed electron beam

Yu Xiao, Shen Jie, Zhong Hao-Wen, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun
PDF
导出引用
  • 在回顾和总结强脉冲电子束表面改性实验的基础上, 利用有限元数值计算方法对强脉冲电子束辐照铝和304不锈钢产生的温度场进行模拟, 给出了靶的近表面区域流体状态存在的特征尺度和特征时间, 并对不同材料特性下熔坑的产生原因进行了讨论. 采用两相流模型, 通过水平集方法和有限元方法结合的计算流体力学模拟了熔坑和表面突起形貌在表面处于熔融状态下的运动特征, 通过和实验数据相对比, 验证了对于高黏度, 高表面张力的高熔点金属, 表面处于流体状态下的张力驱动效应是熔坑等表面形貌演化的重要原因.
    Based on the review of previous experimental and theoretical studies on the surface processing by a pulsed intense electron beam, the induced temperature field in aluminum and 304 stainless steel is simulated by the finite element method (FEM) to estimate the existing time and depth of molten metal flow field on the irradiated surface. The generation of craters is attributed to the thermal resistance formed by the grain boundaries, and the influence of material properties on the mechanism of crater evolution is also discussed. Two-phase flow field simulation on molten metal is carried out with a combination of level-set method and FEM to estimate the mass transfer behavior at the craters and surface protuberance. It is revealed that the mass transfer effect driven by surface tension is an important factor for the formation and evolution of round-shaped craters on the surface of metals with high melting point, viscosity and surface tension coefficient. However, for metals with low melting point, due to the strong disturbance by ablating gas plume and low surface tension effect, the craters are more likely to have irregular splashing edges.
      通信作者: 乐小云, xyle@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175012) 和国家科技重大专项(批准号: 2013 GB109004)资助的课题.
      Corresponding author: Le Xiao-Yun, xyle@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175012), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013 GB109004).
    [1]

    Proskurovsky D I, Rotshtein V P, Ozur G E, Ivanov Yu F, Markov A B 2000 Surf. Coat. Technol. 125 49

    [2]

    Dong C, Wu A, Hao S, Zou J, Liu Z, Zhong P, Zhang A, Xu T, Chen J, Xu J, Liu Q 2003 Surf. Coat. Technol. 163 620

    [3]

    Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S, Shulov V A, Ivanov Yu F, Buchheit R G 1998 J. Vac. Sci Technol. A 16 2480

    [4]

    Shulov V A, Nochovnaya N A 1999 Nucl. Instrum. Meth. B 148 154

    [5]

    Wood B P, Perry A J, Bitteker L J, Waganaar W J 1998 Surf. Coat. Technol. 108-109 171

    [6]

    Yan S, Le X Y, Zhao W J, Xue J M, Wang Y G 2005 Surf. Coat. Technol. 193 69

    [7]

    Pogrebnjak A D, Bratushka S, Boyko V I, Shamanin I V, Tsvintarnaya Yu V 1998 Nucl. Instrum. Meth. B 145 373

    [8]

    Pogrebnjak A D, Mikhailov A D, Pogrebnjak N A, Tsvintarnaya Yu V, Laverntiev V I, Iljashenko M, Valyaev A N, Bratushka S, Zecca A, Sandrik R 1998 Phys. Lett. A 241 357

    [9]

    Qin Y, Zou J, Dong C, Wang X, Wu A, Liu Y, Hao S, Guan Q 2004 Nucl. Instrum. Meth. B 225 544

    [10]

    Grosdidier T, Zou J X, Stein N, Boulanger C, Hao S Z, Dong C 2008 Scripta. Mater. 58 1061

    [11]

    Hao S, Yao S, Guan J, Wu A, Zhong P, Dong C 2001 Curr. Appl. Phys. 1 203

    [12]

    Fetzer R, Mueller G, An W, Weisenburger A 2014 Surf. Coat. Technol. 258 549

    [13]

    Zhang K., Zou J, Grosdidier T, Dong C, Yang D 2006 Surf. Coat Technol. 201 1393

    [14]

    Cheng D Q, Guan Q F, Zhu J, Qiu D H, Cheng X W 2009 Acta Phys. Sin. 58 7300 (in Chinese) [程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛 2009 物理学报 58 7300]

    [15]

    Li Y, Cai J, Lv P, Zou Y, Wan M Z, Peng D J, Gu Q Q, Guan Q F 2012 Acta Phys. Sin. 61 56105 (in Chinese) [李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰 2012 物理学报 61 56105]

    [16]

    Ji L, Yang S Z, Cai J, Li Y, Wang X T, Zhang Z Q, Hou X L, Guan Q F 2013 Acta Phys. Sin. 62 236103 (in Chinese) [季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰 2013 物理学报 62 236103]

    [17]

    Gao Y, Qin Y, Dong C, Li G 2014 Appl. Surf. Sci. 311 413

    [18]

    Su Y, Li G, Niu L, Yang S, Cai J, Guan Q 2015 J. Nanomater. 501 876539

    [19]

    Hao S, Gao B, Wu A, Zou J, Qin Y, Dong C, An J, Guan Q 2005 Nucl. Instrum. Meth. B 240 646

    [20]

    Gao B, Hao S, Zou J, Wu W, Tu G, Dong C 2007 Surf. Coat. Technol. 201 6297

    [21]

    Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146

  • [1]

    Proskurovsky D I, Rotshtein V P, Ozur G E, Ivanov Yu F, Markov A B 2000 Surf. Coat. Technol. 125 49

    [2]

    Dong C, Wu A, Hao S, Zou J, Liu Z, Zhong P, Zhang A, Xu T, Chen J, Xu J, Liu Q 2003 Surf. Coat. Technol. 163 620

    [3]

    Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S, Shulov V A, Ivanov Yu F, Buchheit R G 1998 J. Vac. Sci Technol. A 16 2480

    [4]

    Shulov V A, Nochovnaya N A 1999 Nucl. Instrum. Meth. B 148 154

    [5]

    Wood B P, Perry A J, Bitteker L J, Waganaar W J 1998 Surf. Coat. Technol. 108-109 171

    [6]

    Yan S, Le X Y, Zhao W J, Xue J M, Wang Y G 2005 Surf. Coat. Technol. 193 69

    [7]

    Pogrebnjak A D, Bratushka S, Boyko V I, Shamanin I V, Tsvintarnaya Yu V 1998 Nucl. Instrum. Meth. B 145 373

    [8]

    Pogrebnjak A D, Mikhailov A D, Pogrebnjak N A, Tsvintarnaya Yu V, Laverntiev V I, Iljashenko M, Valyaev A N, Bratushka S, Zecca A, Sandrik R 1998 Phys. Lett. A 241 357

    [9]

    Qin Y, Zou J, Dong C, Wang X, Wu A, Liu Y, Hao S, Guan Q 2004 Nucl. Instrum. Meth. B 225 544

    [10]

    Grosdidier T, Zou J X, Stein N, Boulanger C, Hao S Z, Dong C 2008 Scripta. Mater. 58 1061

    [11]

    Hao S, Yao S, Guan J, Wu A, Zhong P, Dong C 2001 Curr. Appl. Phys. 1 203

    [12]

    Fetzer R, Mueller G, An W, Weisenburger A 2014 Surf. Coat. Technol. 258 549

    [13]

    Zhang K., Zou J, Grosdidier T, Dong C, Yang D 2006 Surf. Coat Technol. 201 1393

    [14]

    Cheng D Q, Guan Q F, Zhu J, Qiu D H, Cheng X W 2009 Acta Phys. Sin. 58 7300 (in Chinese) [程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛 2009 物理学报 58 7300]

    [15]

    Li Y, Cai J, Lv P, Zou Y, Wan M Z, Peng D J, Gu Q Q, Guan Q F 2012 Acta Phys. Sin. 61 56105 (in Chinese) [李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰 2012 物理学报 61 56105]

    [16]

    Ji L, Yang S Z, Cai J, Li Y, Wang X T, Zhang Z Q, Hou X L, Guan Q F 2013 Acta Phys. Sin. 62 236103 (in Chinese) [季乐, 杨盛志, 蔡杰, 李艳, 王晓彤, 张在强, 侯秀丽, 关庆丰 2013 物理学报 62 236103]

    [17]

    Gao Y, Qin Y, Dong C, Li G 2014 Appl. Surf. Sci. 311 413

    [18]

    Su Y, Li G, Niu L, Yang S, Cai J, Guan Q 2015 J. Nanomater. 501 876539

    [19]

    Hao S, Gao B, Wu A, Zou J, Qin Y, Dong C, An J, Guan Q 2005 Nucl. Instrum. Meth. B 240 646

    [20]

    Gao B, Hao S, Zou J, Wu W, Tu G, Dong C 2007 Surf. Coat. Technol. 201 6297

    [21]

    Sussman M, Smereka P, Osher S 1994 J. Comput. Phys. 114 146

  • [1] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [2] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [3] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [4] 郝广辉, 李泽鹏, 高玉娟, 周亚昆. 表面形貌对热阴极电子发射特性的影响. 物理学报, 2019, 68(3): 037901. doi: 10.7498/aps.68.20181725
    [5] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [6] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [7] 董祥雷, 邢辉, 陈长乐, 沙莎, 王建元, 金克新. 六方小面相螺旋在各向异性、表面吸附、界面动力学作用下生长的相场. 物理学报, 2016, 65(2): 020701. doi: 10.7498/aps.65.020701
    [8] 周勋, 罗子江, 王继红, 郭祥, 丁召. 低As压退火对GaAs(001)表面形貌与重构的影响. 物理学报, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [9] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [10] 潘宵, 鞠焕鑫, 冯雪飞, 范其瑭, 王嘉兴, 杨耀文, 朱俊发. F8BT薄膜表面形貌及与Al形成界面的电子结构和反应. 物理学报, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [11] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [12] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [13] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [14] 彭述明, 申华海, 龙兴贵, 周晓松, 杨莉, 祖小涛. 氘化及氦离子注入对钪膜的表面形貌和相结构的影响. 物理学报, 2012, 61(17): 176106. doi: 10.7498/aps.61.176106
    [15] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [16] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [17] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [18] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [19] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [20] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响. 物理学报, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
计量
  • 文章访问数:  2575
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-16
  • 修回日期:  2015-06-30
  • 刊出日期:  2015-11-05

强脉冲电子束辐照材料表面形貌演化的模拟

  • 1. 北京航空航天大学, 物理科学与核能工程学院, 北京 100191;
  • 2. 北京大学, 重离子物理研究所, 北京 100871
  • 通信作者: 乐小云, xyle@buaa.edu.cn
    基金项目: 国家自然科学基金(批准号: 11175012) 和国家科技重大专项(批准号: 2013 GB109004)资助的课题.

摘要: 在回顾和总结强脉冲电子束表面改性实验的基础上, 利用有限元数值计算方法对强脉冲电子束辐照铝和304不锈钢产生的温度场进行模拟, 给出了靶的近表面区域流体状态存在的特征尺度和特征时间, 并对不同材料特性下熔坑的产生原因进行了讨论. 采用两相流模型, 通过水平集方法和有限元方法结合的计算流体力学模拟了熔坑和表面突起形貌在表面处于熔融状态下的运动特征, 通过和实验数据相对比, 验证了对于高黏度, 高表面张力的高熔点金属, 表面处于流体状态下的张力驱动效应是熔坑等表面形貌演化的重要原因.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回