搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究

李立明 宁锋 唐黎明

引用本文:
Citation:

量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究

李立明, 宁锋, 唐黎明

First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires

Li Li-Ming, Ning Feng, Tang Li-Ming
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法, 研究了不同晶体结构和尺寸的GaSb纳米线能带结构特性和载流子的有效质量, 以及单轴应力对GaSb纳米线能带结构的调控. 研究结果表明: 闪锌矿结构[111]方向和纤锌矿结构[0001]方向的小尺寸GaSb纳米线均出现间接带隙的能带结构, 并可通过单轴应力来实现纳米线能带结构由间接带隙到直接带隙的转变, 其中, 闪锌矿结构[111]方向GaSb纳米线仅在受到单轴拉伸应力时才发生能带由间接带隙到直接带隙的转变, 而纤锌矿结构[0001]方向GaSb纳米线无论受单轴拉伸还是压缩应力的作用均可实现能带由间接带隙到直接带隙的转变; [111]和[0001]方向GaSb纳米线的带隙和载流子有效质量与纳米线直径呈非线性关系, 并随纳米线直径的减小而增大; 同一方向和尺寸的GaSb纳米线, 其空穴有效质量要小于电子有效质量, 这表明小尺寸GaSb纳米线有利于空穴载流子输运.
    Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the electronic structures of one-dimensional wurtzite (WZ) and zinc-blende (ZB) GaSb nanowires with different diameters along the [0001] and [111] directions, respectively. The results show that the band gap of the GaSb nanowire increases as the size of the nanowire decreases due to the quantum confinement, and the band structures of the GaSb nanowires display an indirect band structures feature when the diameter of the nanowire is smaller than 3.0 nm, whereas bulk GaSb has a direct gap. Owing to the different responses of the valence band maximum/conduction band minimum energies to strain, the band structures of GaSb nanowires experiences a noticeable indirect-to-direct transition when the nanowires are under the uniaxial strain. For example, an indirect-to-direct band gap transition in the band structure of [111] ZB GaSb nanowires can be realized by applying a uniaxial tensile strain, and this transition in the band structure of [0001] WZ GaSb nanowires can take place by applying both uniaxial tensile and compression strain when the diameter of the nanowire is about 2.0 nm. In addition, it is found that carrier effective mass is dependent on the diameter of the GaSb nanowire, therefore both the electron and hole effective mass values decrease as diameter increases. It is also found that the hole effective mass is smaller than the electron effective mass for GaSb nanowires with the same directions and sizes, indicating that the hole transportation is more prominent than the electron transportation.
      通信作者: 唐黎明, lmtang@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11347022)和湖南省自然科学基金(批准号: 14JJ3117)资助的课题.
      Corresponding author: Tang Li-Ming, lmtang@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347022) and the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ3117).
    [1]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897

    [2]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [3]

    Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227

    [4]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [5]

    Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815

    [6]

    Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113

    [7]

    Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430

    [8]

    Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602

    [9]

    Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148

    [10]

    Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151

    [11]

    Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407

    [12]

    Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761

    [13]

    Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110

    [14]

    Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486

    [15]

    Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303

    [16]

    Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360

    [17]

    Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927

    [18]

    Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 物理学报 61 117103]

    [19]

    Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304

    [20]

    Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355

    [21]

    Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115

    [22]

    Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119

    [23]

    Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566

    [26]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131

    [30]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005

    [31]

    Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841

    [32]

    Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309

    [33]

    Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335

    [34]

    Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301

    [35]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701

    [36]

    Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502

    [37]

    Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114

    [38]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339

    [39]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [40]

    Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418

  • [1]

    Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897

    [2]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [3]

    Favier F, Walter E C, Zach M P, Benter T, Penner R M 2001 Science 293 2227

    [4]

    Wu F, Meng P W, Luo K, Liu Y F, Kan E J 2015 Chin. Phys. B 24 037504

    [5]

    Vurgaftman I, Meyer J R, Ram Mohan L R 2001 J. Appl. Phys. 89 5815

    [6]

    Gallo E M, Chen G, Currie M, Mcguckin T, Prete P, Lovergine N, Nabet B, Spanier J E 2011 Appl. Phys. Lett. 98 241113

    [7]

    Soci C, Zhang A, Bao X Y, Kim H, Lo Y, Wang D 2010 J. Nanosci. Nanotechnol. 10 1430

    [8]

    Mi Z, Chang Y L 2009 J. Nanophoton. 3 031602

    [9]

    Czaban J A, Thompson D A, Lapierre R R 2008 Nano Lett. 9 148

    [10]

    Patolsky F, Zheng G, Lieber C M 2006 Nanomedicine 151

    [11]

    Li J, Gilbertson A, Litvinenko K, Cohen L, Clowes S 2012 Appl. Phys. Lett. 101 152407

    [12]

    Dick K A, Deppert K, Mrtensson T, Mandl B, Samuelson L, Seifert W 2005 Nano Lett. 5 761

    [13]

    Park H D, Prokes S M, Cammarata R C 2005 Appl. Phys. Lett. 87 063110

    [14]

    Dayeh S A, Yu E T, Wang D 2007 Nano Lett. 7 2486

    [15]

    Scheffler M, Nadj-Perge S, Kouwenhoven L P, Borgstrm M T, Bakkers E P 2009 J. Appl. Phys. 106 124303

    [16]

    Ford A C, Ho J C, Chueh Y L, Tseng Y C, Fan Z, Guo J, Bokor J, Javey A 2008 Nano Lett. 9 360

    [17]

    Lassen B, Willatzen M, Melnik R, Lew Y V L 2006 J. Mater. Res. 21 2927

    [18]

    Sun W F, Zheng X X 2012 Acta Phys. Sin. 61 117103 (in Chinese) [孙伟峰, 郑晓霞 2012 物理学报 61 117103]

    [19]

    Ning F, Tang L M, Zhang Y, Chen K Q 2013 J. Appl. Phys. 114 224304

    [20]

    Burke R A, Weng X, Kuo M W, Song Y W, Itsuno A M, Mayer T S, Durbin S M, Reeves R J, Redwing J M 2010 J. Electron. Mater. 39 355

    [21]

    Jeppsson M, Dick K A, Wagner J B, Caroff P, Deppert K, Samuelson L, Wernersson L E 2008 J. Cryst. Growth 310 4115

    [22]

    Jeppsson M, Dick K A, Nilsson H A, Skld N, Wagner J B, Caroff P, Wernersson L E 2008 J. Cryst. Growth 310 5119

    [23]

    Xu W, Chin A, Ye L, Ning C Z, Yu H 2012 J. Appl. Phys. 111 104515

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Ceperley D M, Alder B 1980 Phys. Rev. Lett. 45 566

    [26]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos J 1992 Rev. Mod. Phys. 64 1045

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [29]

    Zherebetskyy D, Wang L W 2014 Adv. Mater. Interfaces 1 1300131

    [30]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2013 J. Phys. D: Appl. Phys. 46 175005

    [31]

    Deng H X, Li S S, Li J 2010 J. Phys. Chem. C 114 4841

    [32]

    Persson M P, Xu H Q 2002 Appl. Phys. Lett. 81 1309

    [33]

    Hong K H, Kim J, Lee S H, Shin J K 2008 Nano Lett. 8 1335

    [34]

    Xiang H J, Wei S H, Da Silva J L F, Li J 2008 Phys. Rev. B 78 193301

    [35]

    Xue H, Pan N, Li M, Wu Y, Wang X, Hou J G 2010 Nanotechnology 21 215701

    [36]

    Peng X, Tang F, Logan P 2011 J. Phys.: Condens. Matter 23 115502

    [37]

    Huang S, Yang L 2011 Appl. Phys. Lett. 98 093114

    [38]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, Nayak S K 2006 Phys. Rev. B 74 035339

    [39]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

    [40]

    Wu Z, Neaton J B, Grossman J C 2009 Nano Lett. 9 2418

计量
  • 文章访问数:  4896
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-16
  • 修回日期:  2015-07-24
  • 刊出日期:  2015-11-05

/

返回文章
返回